Structural studies of E. coli K26 capsular polysaccharide, using g.l.c.-c.i.-m.s.

1988 ◽  
Vol 179 ◽  
pp. 419-423 ◽  
Author(s):  
Linda M. Beynon ◽  
Guy G.S. Dutton
Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


1980 ◽  
Vol 82 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Apurba F. Bhattacharjee ◽  
Kyung J. Kwon-Chung ◽  
Cornelis P.J. Glaudemans

1976 ◽  
Vol 50 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Christina Erbing ◽  
Lennart Kenne ◽  
Bengt Lindberg ◽  
Jörgen Lönngren ◽  
Ian W. Sutherland

1981 ◽  
Vol 59 (14) ◽  
pp. 2081-2085 ◽  
Author(s):  
Karin Leontein ◽  
Bengt Lindberg ◽  
Jörgen Lönngren

The capsular polysaccharide from Streptococcus pneumoniae type 12F is composed of D-glucosyl, D-galactosyl, 2-acetamido-2-deoxy-D-galactosyl, 2-acetamido-2,6-dideoxy-L-galactosyl, and 2-acetamido-2-deoxy-D-mannuronic acid residues in the proportions 2:1:1:1:1. The main structural evidence was adduced from nmr spectroscopy, methylation analysis, and specific degradations whereby it could be concluded that the polysaccharide is composed of hexasaccharide repeating-units having the structure:[Formula: see text]


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
György Schneider ◽  
Nikolett Szentes ◽  
Marianna Horváth ◽  
Ágnes Dorn ◽  
Alysia Cox ◽  
...  

Escherichia (E.) coliK1 strains remain common causative agents of neonatal sepsis and meningitis. We have isolated a lytic bacteriophage (ΦIK1) againstE. colistrain IHE3034 and tested its specificityin vitro, as well as distribution and protective efficacyin vivo. The phage was shown to be specific to the K1 capsular polysaccharide. In the lethal murine model, a high level of protection was afforded by the phage with strict kinetics. A single dose of 1 x 108phage particles administered 10 and 60 minutes following the bacterial challenge elicited 100 % and 95 % survival, respectively. No mice could be rescued if phage administration occurred 3 hours postinfection. Tissue distribution surveys in the surviving mice revealed that the spleen was the primary organ in which accumulation of active ΦIK1 phages could be detected two weeks after phage administration. These results suggest that bacteriophages have potential as therapeutic agents in the control of systemic infections.


1993 ◽  
Vol 10 (4) ◽  
pp. 252-253
Author(s):  
N. Razi ◽  
E. Feyzi ◽  
I. Bj�rk ◽  
U. Lindahl ◽  
P. Oreste ◽  
...  

1987 ◽  
Vol 65 (5) ◽  
pp. 414-422 ◽  
Author(s):  
Eleonora Altman ◽  
Jean-Robert Brisson ◽  
Malcolm B. Perry

The capsular polysaccharide of Haemophilus pleuropneumoniae serotype 2 (ATCC 27089) is composed of D-glucose (two parts), D-galactose (one part), glycerol (one part), and phosphate (one part). Hydrolysis, dephosphorylation, methylation, enzymic studies, and 1H and 13C nuclear magnetic resonance experiments showed that the polysaccharide is a high molecular weight polymer of a tetrasaccharide repeating units, linked by monophosphate diester and having the following structure:[Formula: see text]


Sign in / Sign up

Export Citation Format

Share Document