Atmospheric inputs of trace elements and the geochemistry of the Mediterranean sea

1988 ◽  
Vol 70 (1-2) ◽  
pp. 194
Author(s):  
P. Buat-Menard ◽  
E. Remoudaki ◽  
J. Davies ◽  
C. Quetel ◽  
U. Ezat ◽  
...  
2013 ◽  
Vol 10 (7) ◽  
pp. 12491-12527 ◽  
Author(s):  
C. Guieu ◽  
F. Dulac ◽  
C. Ridame ◽  
P. Pondaven

Abstract. The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea – etymologically, sea surrounded by land – is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m−2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition events were found to impact the dissolved concentrations of inorganic dissolved phosphorus, nitrogen, iron and other trace elements. In the case of Fe, adsorption on sinking particles yields a decrease in dissolved concentration unless binding ligands were produced following a former deposition input and associated fertilization. For the first time, a quantification of the C export induced by the aerosol addition was possible. Description and parameterization of biotic (heterotrophs and autotrophs, including diazotrophs) and abiotic processes (ballast effect due to lithogenic particles) after dust addition in sea surface water, result in a net particulate organic carbon export in part controlled by the "lithogenic carbon pump".


2021 ◽  
Vol 170 ◽  
pp. 112637
Author(s):  
Enrique Lozano-Bilbao ◽  
Ninoska Adern ◽  
Arturo Hardisson ◽  
Dailos González-Weller ◽  
Carmen Rubio ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 1067-1080 ◽  
Author(s):  
E. Ternon ◽  
C. Guieu ◽  
C. Ridame ◽  
S. L'Helguen ◽  
P. Catala

Abstract. The Mediterranean Sea is a semi-enclosed basin characterized by a strong thermal stratification during summer during which the atmosphere is the main source of new nutrients to the nutrient-depleted surface layer. From aerosol sampling and microcosm experiments performed during the TransMed BOUM cruise (June–July 2008) we showed that: (i) the Mediterranean atmosphere composition (Al, Fe, P) was homogeneous over ~28° of longitude and was a mixture with a constant proportion of anthropogenic contribution and a variable but modest contribution of crustal aerosols. This quite stable composition over a one month period and a long transect (~2500 km) allowed to define the Mediterranean atmospheric "background" that characterizes the summer season in the absence of major Saharan event and forest fires, (ii) primary production significantly increased at all tested stations after aerosols addition collected on-board and after Saharan dust analog addition, indicating that both additions relieved on-going (co)-limitations. Although both additions significantly increased the N2 fixation rates at the western station, diazotrophic activity remained very low (~0.2 nmol N L−1 d−1), (iii) due to the presence of anthropogenic particles, the probable higher solubility of nutrients associated with mixed aerosols (crustal + anthropogenic contribution), conferred a higher fertilizing potential to on-board collected aerosol as compared to Saharan dust analog. Finally, those experiments showed that atmospheric inputs from a mixed atmospheric event ("summer rain" type) or from a high-intensity Saharan event would induce comparable response by the biota in the stratified Mediterranean SML, during summer.


2021 ◽  
Author(s):  
Karine Desboeufs ◽  
Franck Fu ◽  
Matthieu Bressac ◽  
Antonio Tovar-Sánchez ◽  
Sylvain Triquet ◽  
...  

Abstract. This study reports the only recent characterisation of two contrasted wet deposition events collected during the PEACETIME cruise in the Mediterranean open seawater, and their impact on trace metals (TMS) marine stocks. Rain samples were analysed for Al, 12 trace metals (TMs hereafter, including Co, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V and Zn) and nutrients (N, P, DOC) concentrations. The first rain sample collected in the Ionian Sea (rain ION) was a wet typical regional background deposition event whereas the second rain collected in the Algerian Basin (rain FAST) was a Saharan dust wet deposition. The concentrations of TMs in the two rain samples were significantly lower compared to concentrations in rains collected at coastal sites reported in the literature, suggesting either less anthropogenic influence in the remote Mediterranean environment, or decreased emissions during the last decades in the Mediterranean Sea. The TMs inventories in the surface microlayer and mixed layer (0–20 m) at ION and FAST stations before and after the events, compared to atmospheric fluxes, showed that the atmospheric inputs were a significant source of particulate TMs for both layers. At the scale of the western and central Mediterranean, the atmospheric inputs were of the same order of magnitude as marine stocks within the ML for dissolved Fe, Co and Zn, underlining the role of the atmosphere in their biogeochemical cycle in the stratified Mediterranean Sea. In case of intense wet dust deposition event, the contribution of atmospheric inputs could be critical for dissolved stocks of the majority of TMs.


2015 ◽  
Vol 112 (13) ◽  
pp. 3926-3930 ◽  
Author(s):  
Valentí Rodellas ◽  
Jordi Garcia-Orellana ◽  
Pere Masqué ◽  
Mor Feldman ◽  
Yishai Weinstein

The Mediterranean Sea (MS) is a semienclosed basin that is considered one of the most oligotrophic seas in the world. In such an environment, inputs of allochthonous nutrients and micronutrients play an important role in sustaining primary productivity. Atmospheric deposition and riverine runoff have been traditionally considered the main external sources of nutrients to the MS, whereas the role of submarine groundwater discharge (SGD) has been largely ignored. However, given the large Mediterranean shore length relative to its surface area, SGD may be a major conveyor of dissolved compounds to the MS. Here, we used a 228Ra mass balance to demonstrate that the total SGD contributes up to (0.3–4.8)⋅1012 m3⋅y−1 to the MS, which appears to be equal or larger by a factor of 16 to the riverine discharge. SGD is also a major source of dissolved inorganic nutrients to the MS, with median annual fluxes of 190⋅109, 0.7⋅109, and 110⋅109 mol for nitrogen, phosphorous, and silica, respectively, which are comparable to riverine and atmospheric inputs. This corroborates the profound implications that SGD may have for the biogeochemical cycles of the MS. Inputs of other dissolved compounds (e.g., iron, carbon) via SGD could also be significant and should be investigated.


Author(s):  
Maria Kanakidou ◽  
Stelios Myriokefalitakis ◽  
Maria Tsagkaraki

2018 ◽  
Vol 115 ◽  
pp. 13-19 ◽  
Author(s):  
Chiara Copat ◽  
Alfina Grasso ◽  
Maria Fiore ◽  
Antonio Cristaldi ◽  
Pietro Zuccarello ◽  
...  

2010 ◽  
Vol 7 (6) ◽  
pp. 8087-8121 ◽  
Author(s):  
E. Ternon ◽  
C. Guieu ◽  
C. Ridame ◽  
S. L'Helguen ◽  
P. Catala

Abstract. The Mediterranean Sea is a semi-enclosed basin characterized by a strong thermal stratification during summer during which the atmosphere is the main source of new nutrients to the nutrient-depleted surface layer. From aerosol sampling and microcosm experiments performed during the TransMed BOUM cruise (June–July 2008) we showed that: (i) the Mediterranean atmosphere composition (Al, Fe, P) was homogeneous over ~28° of longitude and was a mixture with a constant proportion of anthropogenic contribution and a variable but modest contribution of crustal aerosols. This quite stable composition over a one month period and a long transect (~2500 km) allowed to define the Mediterranean atmospheric "background" that characterizes the summer season in the absence of major Saharan event and forest fires, (ii) primary production significantly increased at all tested stations after aerosols addition collected on-board and after Saharan dust analog addition, indicating that both additions relieved on-going (co)-limitations. Although both additions significantly increased the N2 fixation rates at the western station, diazotrophic activity remained very low (~0.2 nmol N L−1 d−1), (iii) due to the presence of anthropogenic particles, the probable higher solubility of nutrients associated with mixed aerosols (crustal + anthropogenic contribution), conferred a higher fertilizing potential to on-board collected aerosol as compared to Saharan dust analog. Finally, those experiments showed that atmospheric inputs from a mixed atmospheric event ("summer rain" type) or from a high-intensity Saharan event would induce comparable response by the biota in the stratified Mediterranean SML, during summer.


1999 ◽  
Vol 39 (12) ◽  
pp. 1-7 ◽  
Author(s):  
N. Pirrone ◽  
P. Costa ◽  
J. M. Pacyna

This report presents past and current annual emissions of Pb, Ni, Cu, Cd, and V to the atmosphere from major anthropogenic sources in the Mediterranean Sea region and discusses projected emissions for the 1998-2015 period. Gasoline combustion still represents the major emission source of Pb in the urban environment, however its contribution to the regional atmospheric budget is following a downward trend. On a country-by-country basis, spatial distributions of current Pb emissions show that Syria is the leading emitting country with 18.7% of the regional total, followed by Italy (12.3%), France (11.2%), Turkey (11.1%), Egypt (7.5%), Yugoslavia (6.3%), Spain (6.2%), Libya (5.5%), Algeria (5.1%), Israel (4.0%), Bulgaria (3.1%), Morocco (2.3%), Lebanon (2.2%), Greece (2.1%), Jordan (1.1%), Tunisia (0.5%), Cyprus (0.5%), Albania (0.3%). The emission of trace elements from the combustion of fossil fuels as well as from primary and secondary non-ferrous metal smelters represents an important source of Pb, Ni, Cu, Cd and V in the region as a whole. Greece, Tunisia and Lebanon are the major per-capita contributors of Pb released to the regional atmosphere, whereas over 50% of Ni is released from anthropogenic sources in Lebanon, Tunisia, Bulgaria and Cyprus. Cadmium emissions are significant in Lebanon, Tunisia and Bulgaria, whereas Libya is the major emitter of Cu in the region. Annual emissions in the Mediterranean Sea region are compared with those derived for other regions and the variations in emission patterns by source category are discussed. The projected emissions of trace elements up to the 2015 are estimated considering an upper and lower case scenario in the temporal variations of the control efficiency of major emission source categories.


Sign in / Sign up

Export Citation Format

Share Document