green turtles
Recently Published Documents


TOTAL DOCUMENTS

627
(FIVE YEARS 160)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Blair P Bentley ◽  
Tomás Carrasco-Valenzuela ◽  
Elisa K. S. Ramos ◽  
Harvinder Pawar ◽  
Larissa Souza Arantes ◽  
...  

Marine turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 MYA, yet the genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remain largely unknown. Additionally, many populations have declined drastically due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for green (Chelonia mydas) and leatherback (Dermochelys coriacea) turtles, representing the two extant marine turtle families (MRCA ~60 MYA). Generally, these genomes are highly syntenic and homologous. Non-collinearity was associated with higher copy numbers of immune, zinc-finger, or olfactory receptor (OR) genes in green turtles. Gene family analyses suggested that ORs related to waterborne odorants have expanded in green turtles and contracted in leatherbacks, which may underlie immunological and sensory adaptations assisting navigation and occupancy of neritic versus pelagic environments, and diet specialization. Microchromosomes showed reduced collinearity, and greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, demographic history and diversity analyses showed stark contrasts between species, indicating that leatherback turtles have had a low yet stable effective population size, extremely low diversity when compared to other reptiles, and a higher proportion of deleterious variants, reinforcing concern over the persistence of this species under future climate scenarios. These highly contiguous genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


2022 ◽  
Author(s):  
Pablo del Monte-Luna ◽  
Miguel Nakamura ◽  
Vicente Guzmán-Hernández ◽  
Eduardo Cuevas ◽  
Melania López-Castro ◽  
...  

Abstract The stock-recruitment relationship (SR), customarily used in fisheries assessment, can be used to analyze demographic data of sea turtles to infer changes in hatchling production (R) as a function of nester abundance (S), recruitment rates and the influence of environmental conditions on these population features. The SR Cushing model (R=aS^b), where a and b are the model parameters) is well-suited for representing the dynamics of recovering populations, such as the green turtle (Chelonia mydas) in Campeche, Mexico. This study aimed to explore the SR Cushing model using a time series of the abundance of nesters and hatchlings (1984–2020). By applying local regressions (9-yr moving windows), we found that the time series of parameter b (the change in R as a function of S) and the recruitment rate (hatchlings per nester) were inversely correlated with a 26-yr cycle of the Atlantic Multidecadal Oscillation –sea surface temperature (SST), over the Atlantic– (r^2=0.83) and (r^2=0.64), respectively, at a 3-yr lag). Model diagnostics using the time-dependent Cushing model substantiated that the log-normal distribution of hatchlings of C. mydas in Campeche depends on the abundance of nesting females and on a low frequency SST signal (r^2=0.98). The positive trend in nester numbers of green turtles in Campeche during the past 44 years may be the result of persistent conservation efforts, while the drastic and sporadic changes in the growth rate of annual arrivals and hatchling production are suggestive of population dynamics driven by low frequency, basin-wide environmental signals.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kelly A. Sloan ◽  
David S. Addison ◽  
Andrew T. Glinsky ◽  
Allison M. Benscoter ◽  
Kristen M. Hart

Globally, sea turtle research and conservation efforts are underway to identify important high-use areas where these imperiled individuals may be resident for weeks to months to years. In the southeastern Gulf of Mexico, recent telemetry studies highlighted post-nesting foraging sites for federally endangered green turtles (Chelonia mydas) around the Florida Keys. In order to delineate additional areas that may serve as inter-nesting, migratory, and foraging hotspots for reproductively active females nesting in peninsular southwest Florida, we satellite-tagged 14 green turtles that nested at two sites along the southeast Gulf of Mexico coastline between 2017 and 2019: Sanibel and Keewaydin Islands. Prior to this study, green turtles nesting in southwest Florida had not previously been tracked and their movements were unknown. We used switching state space modeling to show that an area off Cape Sable (Everglades), Florida Bay, and the Marquesas Keys are important foraging areas that support individuals that nest on southwest Florida mainland beaches. Turtles were tracked for 39–383 days, migrated for a mean of 4 days, and arrived at their respective foraging grounds in the months of July through September. Turtles remained resident in their respective foraging sites until tags failed, typically after several months, where they established mean home ranges (50% kernel density estimate) of 296 km2. Centroid locations for turtles at common foraging sites were 1.2–36.5 km apart. The area off southwest Florida Everglades appears to be a hotspot for these turtles during both inter-nesting and foraging; this location was also used by turtles that were previously satellite tagged in the Dry Tortugas after nesting. Further evaluation of this important habitat is warranted. Understanding where and when imperiled yet recovering green turtles forage and remain resident is key information for designing surveys of foraging resources and developing additional protection strategies intended to enhance population recovery trajectories.


2022 ◽  
pp. 118796
Author(s):  
Yasmina Rodríguez ◽  
Frederic Vandeperre ◽  
Marco R. Santos ◽  
Laura Herrera ◽  
Hugo Parra ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Liberty L. Boyd ◽  
John D. Zardus ◽  
Courtney M. Knauer ◽  
Lawrence D. Wood

Epibionts are organisms that utilize the exterior of other organisms as a living substratum. Many affiliate opportunistically with hosts of different species, but others specialize on particular hosts as obligate associates. We investigated a case of apparent host specificity between two barnacles that are epizoites of sea turtles and illuminate some ecological considerations that may shape their host relationships. The barnacles Chelonibia testudinaria and Chelonibia caretta, though roughly similar in appearance, are separable by distinctions in morphology, genotype, and lifestyle. However, though each is known to colonize both green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) sea turtles, C. testudinaria is >5 times more common on greens, while C. caretta is >300 times more common on hawksbills. Two competing explanations for this asymmetry in barnacle incidence are either that the species’ larvae are spatially segregated in mutually exclusive host-encounter zones or their distributions overlap and the larvae behaviorally select their hosts from a common pool. We indirectly tested the latter by documenting the occurrence of adults of both barnacle species in two locations (SE Florida and Nose Be, Madagascar) where both turtle species co-mingle. For green and hawksbill turtles in both locations (Florida: n = 32 and n = 275, respectively; Madagascar: n = 32 and n = 125, respectively), we found that C. testudinaria occurred on green turtles only (percent occurrence – FL: 38.1%; MD: 6.3%), whereas the barnacle C. caretta was exclusively found on hawksbill turtles (FL: 82.2%; MD: 27.5%). These results support the hypothesis that the larvae of these barnacles differentially select host species from a shared supply. Physio-biochemical differences in host shell material, conspecific chemical cues, external microbial biofilms, and other surface signals may be salient factors in larval selectivity. Alternatively, barnacle presence may vary by host micro-environment. Dissimilarities in scute structure and shell growth between hawksbill and green turtles may promote critical differences in attachment modes observed between these barnacles. In understanding the co-evolution of barnacles and hosts it is key to consider the ecologies of both hosts and epibionts in interpreting associations of chance, choice, and dependence. Further studies are necessary to investigate the population status and settlement spectrum of barnacles inhabiting sea turtles.


2021 ◽  
Vol 545 ◽  
pp. 151632
Author(s):  
Kohei Tabuki ◽  
Hideaki Nishizawa ◽  
Osamu Abe ◽  
Junichi Okuyama ◽  
Shigeo Tanizaki
Keyword(s):  

2021 ◽  
Vol 173 ◽  
pp. 113111
Author(s):  
Daniel Y. Choi ◽  
Christian Gredzens ◽  
Donna J. Shaver
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ahmed M. Al-Mansi ◽  
Anas Z. Sambas ◽  
Baleegh A. Abukaboos ◽  
Ahmed H. Al Zahrani ◽  
Ahmed S. Abdulaziz ◽  
...  

Identifying migratory pathways and linking nesting sites to foraging areas is essential for effective conservation management of migratory species, such as marine turtles. Post-nesting marine turtles disperse from their nesting sites to multiple foraging areas located from a few to hundreds of kilometers away. Over a six-year period 16 female green turtles (Chelonia mydas) were equipped with satellite transmitters between October and December of five nesting seasons to determine their migratory routes from their nesting area at five contiguous beaches at Ras Baridi, Saudi Arabia, to their foraging areas. All foraging areas for these turtles were located in shallow coastal areas or in shallow areas around offshore islands within the Red Sea basin. The majority (n = 12) migrated through the shallow (<200 m) water along the coastal margin to reach foraging areas located to the North (n = 4) and South (n = 12) of the nesting site. Four turtles crossed the deep trough of the Red Sea during their journeys. Ten of the 16 turtles migrated to foraging areas within the territorial waters of Saudi Arabia. The other six turtles migrated to foraging areas in Egypt (n = 4) and Eritrea (n = 2). These 16 turtles traveled between 130 and 1749 km from their nesting site to foraging areas located in the northern, middle and southern parts of the Red Sea. Because these turtles utilized foraging areas in at least three countries (Saudi Arabia, Egypt, and Eritrea) and one passed through the territorial waters of Sudan, conservation and management of green turtles in the Red Sea requires multinational cooperation to address anthropogenic threats in the region.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Jihee Kim ◽  
Il-Hun Kim ◽  
Min-Seop Kim ◽  
Hae Rim Lee ◽  
Young Jun Kim ◽  
...  

Abstract Background Sea turtles, which are globally endangered species, have been stranded and found as bycatch on the Korean shore recently. More studies on sea turtles in Korea are necessary to aid their conservation. To investigate the spatio-temporal occurrence patterns of sea turtles on the Korean shore, we recorded sampling locations and dates, identified species and sexes and measured sizes (maximum curved carapace length; CCL) of collected sea turtles from the year 2014 to 2020. For an analysis of diets through stomach contents, we identified the morphology of the remaining food and extracted DNA, followed by amplification, cloning, and sequencing. Results A total of 62 stranded or bycaught sea turtle samples were collected from the Korean shores during the study period. There were 36 loggerhead turtles, which were the dominant species, followed by 19 green turtles, three hawksbill turtles, two olive ridley turtles, and two leatherback turtles. The highest numbers were collected in the year 2017 and during summer among the seasons. In terms of locations, most sea turtles were collected from the East Sea, especially from Pohang. Comparing the sizes of collected sea turtles according to species, the average CCL of loggerhead turtles was 79.8 cm, of green turtles was 73.5 cm, and of the relatively large leatherback turtle species was 126.2 cm. In most species, the proportion of females was higher than that of males and juveniles, and was more than 70% across all the species. Food remains were morphologically identified from 19 stomachs, mainly at class level. Seaweeds were abundant in stomachs of green turtles, and Bivalvia was the most detected food item in loggerhead turtles. Based on DNA analysis, food items from a total of 26 stomachs were identified to the species or genus level. The gulfweed, Sargassum thunbergii, and the kelp species, Saccharina japonica, were frequently detected from the stomachs of green turtles and the jellyfish, Cyanea nozakii, the swimming crab, Portunus trituberculatus, and kelps had high frequencies of occurrences in loggerhead turtles. Conclusions Our findings support those of previous studies suggesting that sea turtles are steadily appearing in the Korean sea. In addition, we verified that fish and seaweed, which inhabit the Korean sea, are frequently detected in the stomach of sea turtles. Accordingly, there is a possibility that sea turtles use the Korean sea as feeding grounds and habitats. These results can serve as basic data for the conservation of globally endangered sea turtles.


Sign in / Sign up

Export Citation Format

Share Document