dissolved inorganic nutrients
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 13 (12) ◽  
pp. 5915-5949
Author(s):  
Malek Belgacem ◽  
Katrin Schroeder ◽  
Alexander Barth ◽  
Charles Troupin ◽  
Bruno Pavoni ◽  
...  

Abstract. The Western MEDiterranean Sea BioGeochemical Climatology (BGC-WMED, https://doi.org/10.1594/PANGAEA.930447) (Belgacem et al., 2021) presented here is a product derived from quality-controlled in situ observations. Annual mean gridded nutrient fields for the period 1981–2017 and its sub-periods 1981–2004 and 2005–2017 on a horizontal 1/4∘ × 1/4∘ grid have been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous interpolated fields, the method of the variational inverse model (VIM) was applied. A sensitivity analysis was carried out to assess the comparability of the data product with the observational data. The BGC-WMED was then compared to other available data products, i.e., the MedBFM biogeochemical reanalysis of the Mediterranean Sea and the World Ocean Atlas 2018 (WOA18) (its biogeochemical part). The new product reproduces common features with more detailed patterns and agrees with previous records. This suggests a good reference for the region and for the scientific community for the understanding of inorganic nutrient variability in the western Mediterranean Sea, in space and in time, but our new climatology can also be used to validate numerical simulations, making it a reference data product.


2021 ◽  
Vol 8 ◽  
Author(s):  
Antonio Comesaña ◽  
Bieito Fernández-Castro ◽  
Paloma Chouciño ◽  
Emilio Fernández ◽  
Antonio Fuentes-Lema ◽  
...  

Previous studies focused on understanding the role of physical drivers on phytoplankton bloom formation mainly used indirect estimates of turbulent mixing. Here we use weekly observations of microstructure turbulence, dissolved inorganic nutrients, chlorophyll a concentration and primary production carried out in the Ría de Vigo (NW Iberian upwelling system) between March 2017 and May 2018 to investigate the relationship between turbulent mixing and phytoplankton growth at different temporal scales. In order to interpret our results, we used the theoretical framework described by the Critical Turbulent Hypothesis (CTH). According to this conceptual model if turbulence is low enough, the depth of the layer where mixing is active can be shallower than the mixed-layer depth, and phytoplankton may receive enough light to bloom. Our results showed that the coupling between turbulent mixing and phytoplankton growth in this system occurs at seasonal, but also at shorter time scales. In agreement with the CTH, higher phytoplankton growth rates were observed when mixing was low during spring-summer transitional and upwelling periods, whereas low values were described during periods of high mixing (fall-winter transitional and downwelling). However, low mixing conditions were not enough to ensure phytoplankton growth, as low phytoplankton growth was also found under these circumstances. Wavelet spectral analysis revealed that turbulent mixing and phytoplankton growth were also related at shorter time scales. The higher coherence between both variables was found in spring-summer at the ~16–30 d period and in fall-winter at the ~16–90 d period. These results suggest that mixing could act as a control factor on phytoplankton growth over the seasonal cycle, and could be also involved in the formation of occasional short-lived phytoplankton blooms.


2021 ◽  
Author(s):  
Malek Belgacem ◽  
Katrin Schroeder ◽  
Alexander Barth ◽  
Charles Troupin ◽  
Bruno Pavoni ◽  
...  

Abstract. The Western MEDiterranean Sea BioGeochemical Climatology (BGC-WMED) presented here is a product derived from in situ observations. Annual mean gridded nutrient fields for the period 1981–2017, and its sub-periods 1981–2004 and 2005–2017, on a horizontal 1/4° × 1/4° grid have been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous interpolated fields, the method of the Variational Inverse Model (VIM) was applied. A sensitivity analysis was carried out to assess the comparability of the data product with the observational data. The BGC-WMED has then been compared to other available data products, i.e. the medBFM biogeochemical reanalysis of the Mediterranean Sea and the World Ocean Atlas18 (WOA18) (its biogeochemical part). The BGC-WMED product supports the understanding of inorganic nutrient variability in the western Mediterranean Sea, in space and in time, but can also be used to validate numerical simulations making it a reference data product.


2021 ◽  
Vol 29 (2) ◽  
pp. 123-134
Author(s):  
J.P Udoh ◽  
A.J Otoh ◽  
M.E Udang

The potential of reducing environmental impact of untreated brewery effluent was investigated. Although concentrations of pollutants in such effluents are usually considered low and inadvertently discharged into adjacent urban drainage facility, mycoremediation to remove dissolved inorganic nutrients in effluent was conducted with a view for aquaculture use in Uyo metropolis, southeast Nigeria. Raw brewery effluents were obtained and screened for indigenous microbial flora. Autochthonous fungi isolated included Aspergillus niger, Verticillium sp. and Mucor sp. The potential use of isolates as alternative treatment of brewery effluents was analyzed for treated and control groups. Treated group was inoculated with pure colonies of fungi isolates while the control group received no fungi treatment or modification. Both groups were incubated for seven (7) days. Thereafter, the physicochemical parameters of raw and remediated effluents were analysed and compared with National Environmental Standards and Regulations Enforcement Agency (NESREA) and aquaculture standards. Results confirmed suitability of autochthonous fungi isolates in mycoremediation of brewery effluent for aquaculture and irrigation. Key words: effluent toxicity, industrial pollution, mycoremediation, aquatic ecosystem, Uyo


2021 ◽  
Author(s):  
Malek Belgacem ◽  
Jacopo Chiggiato ◽  
Katrin Schroeder ◽  
Alexander Barth ◽  
Charles Troupin ◽  
...  

<p>Ocean life relies on the loads of dissolved inorganic nutrients (nitrate, phosphate and silicate) and other micro-nutrients into the euphotic layer. They fuel phytoplankton growth that maintains the equilibrium of the food web. Ocean circulation and physical processes continually drive the large -scale distribution of chemicals toward a homogeneous distribution (Williams and Follows, 2003). The biological and biochemical processes counteract this tendency. Therefore, describing nutrient dynamics is important to understand the overall ecosystem functioning.</p><p>At global scale, most of the biogeochemical descriptions are based on model simulations and satellite data, since nutrient in situ observations are generally infrequent and not homogeneously distributed in space and time. Climatological mapping is often used to understand the biogeochemical state of the ocean representing monthly, seasonally or annual averaged fields.</p><p>Within this context, the western Mediterranean Sea climatology (BGC-WMED) presented here is a product derived from in situ observations, derived from various data sources: in total, 2253 in-situ inorganic nutrient profiles over the period 1981-2017 have been used (Medar/MEDATLAS, Fichaut et al., 2003; the CNR-WMED biogeochemical dataset, Belgacem et al., 2020; SeaDataNet data product, https://www.seadatanet.org; Mediterranean Ocean Observing System for the Environment, MOOSE, http://www.moose-network.fr/).</p><p>Annual mean gridded nutrient fields for the period 1981-2017, and sub-periods 1981-2004 and 2005-2017, on a horizontal 1/4° × 1/4° grid have been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous interpolated fields, an advanced N-dimensional version of DIVA, DIVAnd v2.5.1 (Barth et al., 2014), which is based on the variational inverse method (VIM) (Brasseur et al., 1996), has been used.</p><p>A sensitivity analysis was carried out to assess the comparability of the data product with the observational data. The BGC-WMED has then been compared to other available data products, i.e. the medBFM biogeochemical reanalysis and the biogeochemical component of WOA18.</p><p>Keywords: Mediterranean Sea, climatology, inorganic nutrient, in situ observations. </p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Guy Sisma-Ventura ◽  
Nurit Kress ◽  
Jacob Silverman ◽  
Yaron Gertner ◽  
Tal Ozer ◽  
...  

Long-term trends in oxygen, salinity, and nutrients were followed in the Southeastern Mediterranean (SEMS) deep waters from 2002 to 2020. Results show a net decrease in oxygen since 2008 of −0.5 ± 0.1 μmol kg−1 yr−1 in the bathypelagic depths (1,200–2,000 m). Multiannual variability in oxygen levels superimposed this trend, and is likely associated with variations in thermohaline fluxes. The 2020 mean oxygen concentration of 179.5 ± 2.3 μmol kg−1 is comparable to the pre-Eastern Mediterranean Transient (EMT) mean value. The post-EMT signature is clearly demonstrated in both oxygen and salinity over the period of 2002–2013, but since 2014 it diminished, mainly due to mixing of the Aegean deep water (AegDW) mass with the overlying old Adriatic water mass. This trend reflects a switch back to the pre-EMT regime, characterized by thermohaline homogeneity of the deep water column in the SEMS. The long-term decline of deep water oxygen levels is also accompanied by a corresponding increase in dissolved inorganic nutrients, supporting aging of the deep water masses. Our results suggest that ventilation of the SEMS deep water is currently occurring at a lower, pre-EMT rate, probably as a result of moderated deep water formation in recent time.


Sign in / Sign up

Export Citation Format

Share Document