Relaxation behavior of a system of coupled vibrations

1984 ◽  
Vol 110 (6) ◽  
pp. 659-662
Author(s):  
S. Rashev
Author(s):  
Manindra Kumar ◽  
Neelabh Srivastava

Background and Objective: Zwitterionic polymer electrolyte has been successfully synthesized using NH4PF6 salt. The conductivity of the synthesized polymer membrane is found to be of the order of 10-3Scm-1. Dielectric and Modulus properties of the polymer electrolyte have also been studied which showed well relaxation peaks with both temperature and salt concentrations. Result: This is well depicted with the loss tangent curve. Debye type relaxation behavior has observed from the electric modulus. Conclusion: Frequency dependent conductivity data (fitted with Jonscher's power law equation) confirmed the presence of NCL/SLPL type behavior in the studied frequency range.


1987 ◽  
Vol 20 (2) ◽  
pp. 422-427 ◽  
Author(s):  
B. C. Perry ◽  
Jack L. Koenig ◽  
J. B. Lando

2016 ◽  
Vol 49 (5) ◽  
pp. 381-396 ◽  
Author(s):  
Farzad A Nobari Azar ◽  
Murat Şen

Natural rubber/chloroprene rubber (NR/CR) blends are among the commonly used rubber blends in industry and continuously are exposed to severe weather changes. To investigate the effects of accelerator type on the network structure and stress relaxation of unaged and aged NR/CE vulcanizates, tetramethyl thiuram disulfide, 2-mercaptobenzothiazole, and diphenyl guanidine accelerators have been chosen to represent fast, moderate, and slow accelerator groups, respectively. Three batches have been prepared with exactly the same components and mixing conditions differing only in accelerator type. Temperatures scanning stress relaxation and pulse nuclear magnetic resonance techniques have been used to reveal the structural changes of differently accelerated rubber blends before and after weathering. Nonoxidative thermal decomposition analyses have been carried out using a thermogravimetric analyzer. Results indicate that there is a strong interdependence between accelerator type and stress relaxation behavior, network structure, cross-linking density, and aging behavior of the blends. Accelerator type also affects decomposition energy of the blends.


Sign in / Sign up

Export Citation Format

Share Document