stress relaxation behavior
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 55)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Yong-Cheng Lin ◽  
Jiang-Shan Zhu ◽  
Jia-Yang Chen ◽  
Jun-Quan Wang

AbstractMarginal-restraint mandrel-free spinning is an advanced technology for manufacturing ellipsoidal heads with large diameter-thickness ratios. Nevertheless, the spinning-induced residual stress, which greatly influences the in-service performance of spun heads, should be removed. In this study, the effects of annealing on the residual-stress relaxation behavior of 5052H32 aluminum alloy spun heads were investigated. It is found that the residual stress first rapidly decreases and then remains steady with the increase in annealing time at the tested annealing temperatures. The relaxation of the residual stress becomes increasingly obvious with the increase in annealing temperature. When the annealing temperature is less than 220 °C, there are no obvious changes in grain size. Moreover, the spinning-induced dislocations are consumed by the static recovery behavior, which decreases the residual stress during annealing. When the annealing temperature is approximately 300 °C, the broken grains transform into equiaxed grains. In addition, static recrystallization and recovery behaviors occur simultaneously to promote the relaxation of the residual stress. Considering the different stress relaxation mechanisms, a model based on the Zener-Wert-Avrami equation was established to predict the residual-stress relaxation behavior. Finally, the optimized annealing temperature and time were approximately 300 °C and 30 min, respectively.


2021 ◽  
Vol 41 (5) ◽  
pp. 365-374
Author(s):  
Weiqiang Lian ◽  
Huipeng Han ◽  
Xiaoxin Zhang ◽  
Guirong Peng ◽  
Zhaojing Jia ◽  
...  

Abstract Anhydride cured epoxy vitrimers usually exhibit desired mechanical strength but poor toughness and slow transesterification rate. Therefore, the repairing property of the material was restricted. In this paper, polyurethane modified epoxy vitrimer (PU-Epv) was prepared. PU was introduced into the vitrimer system of tetrahydrophthalic anhydride cured epoxy to improve the toughness of the material. Meanwhile, because of the presence of amino ester, the transesterification reaction was promoted and the activation energy of the transesterification was only 33.59 kJ/mol. In the thermal welding experiment, the material could be welded at least five times, and scratches on the surface of the samples could be efficiently repaired within 30 min. The toughness of the material was improved without damaging the strength. Meanwhile, the hard thermosetting epoxy was endowed with excellent repairing properties to increase the service life of the material.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 978
Author(s):  
George C. Papanicolaou ◽  
Diana V. Portan ◽  
Lykourgos C. Kontaxis

The response of fiber-reinforced polymer composites to an externally applied mechanical excitation is closely related to the microscopic stress transfer mechanisms taking place in the fiber–matrix interphasial region. In particular, in the case of viscoelastic responses, these mechanisms are time dependent. Defining the interphase thickness as the maximum radial distance from the fiber surface where a specific matrix property is affected by the fiber presence, it is important to study its variation with time. In the present investigation, the stress relaxation behavior of a glass fiber-reinforced polymer (GFRP) under flexural conditions was studied. Next, applying the hybrid viscoelastic interphase model (HVIM), developed by the first author, the interphase modulus and interphase thickness were both evaluated, and their variation with time during the stress relaxation test was plotted. It was found that the interphase modulus decreases with the radial distance, being always higher than the bulk matrix modulus. In addition, the interphase thickness increases with time, showing that during stress relaxation, fiber–matrix debonding takes place. Finally, the effect of fiber interaction on the interphase modulus was found. It is observed that fiber interaction depends on both the fiber–matrix degree of adhesion as well as the fiber volume fraction and the time-dependent interphase modulus.


Sign in / Sign up

Export Citation Format

Share Document