Electric dipole moment of SrF X 2Σ+ from high-precision stark effect measurements

1985 ◽  
Vol 113 (4) ◽  
pp. 351-354 ◽  
Author(s):  
W.E. Ernst ◽  
J. Kändler ◽  
S. Kindt ◽  
T. Törring
1976 ◽  
Vol 31 (3-4) ◽  
pp. 374-380 ◽  
Author(s):  
W. U. Stieda ◽  
E. Tiemann ◽  
T. Törring ◽  
J. Hoeft

Abstract The rotational spectra of GeS and GeSe were measured in the frequency range of 66 GHz to 110 GHz with high precision. The breakdown of the Born-Oppenheimer approximation was observed for the rotational constant yol. With the known molecular 37-factor and the electric dipole moment the adiabatic part of the Born-Oppenheimer correction can be extracted from the primary observa-tion on y01. The adiabatic correction is very similar in both molecules but differs from the results in the earlier measurements on PbS.


1974 ◽  
Vol 29 (10) ◽  
pp. 1498-1500 ◽  
Author(s):  
W. Czieslik ◽  
L. Carpentier ◽  
D. H. Sutter

Abstract The microwave spectrum of Methylenecyclobutenone has been investigated in the vibrational ground state in the range of 8 to 26.5 GHz. From a least square fit of 12 lines with J ≦ 4 the rotational constants have been calculated as A =5.775664±0.000009 GHz, B = 4.312314 ± 0.000007 GHz, C = 2.467814±0.000008 GHz. The inertia defect Δ = - 0.09 amuÅ2 indicates that the molecule is planar. From Stark-effect measurements the components of the molecular electric dipole moment were obtaied as |μa| = 2.04 ± 0.02 D, |μb| = 2.70±0.03 D, |μtotal| = 3.39 ± 0.05 D.


1971 ◽  
Vol 26 (11) ◽  
pp. 1809-1812 ◽  
Author(s):  
E. Tiemann

Stark-effect measurements on pure rotational transitions of TlBr and Til are described. The derived electric dipole moments of the most abundant isotopic molecules on the ground vibrational state are:205TL79Br : | μ0| = (4.493 ± 0.050) D , 205Tl127 I | μ 0| =(4.607 ± 0.070) D .The electric dipole moment of 205Tl19F | μ 0|=4.2282 (8) D was used as standard.


1969 ◽  
Vol 24 (9) ◽  
pp. 1422-1423 ◽  
Author(s):  
J. Hoeft ◽  
F.J. Lovas ◽  
T. Törring

Abstract Stark effect measurements on pure rotational transitions of SiS are described. Measurements on the ground vibra-tional state of the most abundant molecule resulted in the following electric dipole moment:


1977 ◽  
Vol 32 (8) ◽  
pp. 890-896 ◽  
Author(s):  
J. Wiese ◽  
D. H. Sutter

Abstract The microwave rotational spectrum of the most abundant species of 3-Cyanothiophene was investigated for the ground vibrational state. Rotational constants and centrifugal distortion constants are given. The electric dipole moment components μa and μb and the 14N-quadrupole coupling constant X + = X bb + X cc were determined from the Stark-effect splittings and hfs-splittings respectively. The experimental results are compared to CNDO/2 calculations and are discussed with reference to ring distortion.


1988 ◽  
Vol 43 (2) ◽  
pp. 133-137 ◽  
Author(s):  
Joachim Gripp ◽  
Helmut Dreizler

The first rotational transition of cyanogen iodide-15N (IC15N) has been investigated by microwave Fourier transform (MWFT) Stark effect spectroscopy to determine the electric dipole moment. In addition the first four rotational transitions have been measured by MWFT spectroscopy to obtain accurate parameters for the rotational, quadrupole and spin-rotation coupling parameters.


1969 ◽  
Vol 50 (9) ◽  
pp. 4118-4118 ◽  
Author(s):  
A. M. Mirri ◽  
G. Corbelli ◽  
P. Forti

1972 ◽  
Vol 27 (1) ◽  
pp. 77-91 ◽  
Author(s):  
R. Ley ◽  
W. Schauer

AbstractHyperfine structure, Stark effect and Zeeman effect of the TlCl molecule have been measured with a molecular beam apparatus using electric four poles as deflecting fields and a homogeneous electric field parallel to a superimposed magnetic field in the transition region. Electric dipole transitions were induced between the hyperfine structure levels of the first rotational state J = 1 in both strong and weak external field.The following quantities could be evaluated from the spectra: the electric dipole moment µel and the magnetic rotational dipole moment µJ of the molecule, the nuclear spin-rotational interactions c1 and c2, the scalar and tensor part of the nuclear dipole-dipole interaction dS and dT, the quadrupole coupling constant e q Q of the Cl nucleus, the anisotropy of the magnetic susceptibility ξ⊥− ξ∥ , the anisotropy of the magnetic shielding of the external magnetic field at the position of both nuclei (σ⊥- σ∥)1 and (σ⊥- σ∥)2, the magnetic moment of the Cl nucleus multiplied by the scalar part of the magnetic shielding tensor µ2 · (1 - σS)2. For the most abundant isotop 205Tl35Cl the vibrational dependence of most of these quantities was measured in the vibrational states v =0, 1, 2, 3. Isotopic effects for 203Tl35Cl, 205Tl37Cl and 203Tl37Cl were investigated in the ground vibrational state. In addition the vibrational dependence of the electric dipole moment was measured for all isotopic species.It is pointed out that the usual connections between (σ⊥- σ∥)1,2 and c1,2 and between ξ⊥− ξ∥ and µJ do not hold when the excited electronic states of the molecule obey Hund’s coupling case c, which occurs most probably in TlCl.


Sign in / Sign up

Export Citation Format

Share Document