The metal-ligand bond strengths in cationic gold(I) complexes. Application of approximate density functional theory

1995 ◽  
Vol 236 (1-2) ◽  
pp. 194-200 ◽  
Author(s):  
Roland H. Hertwig ◽  
Jan Hrušák ◽  
Detlef Schröder ◽  
Wolfram Koch ◽  
Helmut Schwarz
2019 ◽  
Vol 21 (26) ◽  
pp. 13959-13967 ◽  
Author(s):  
Ethan M. Cunningham ◽  
Alexander S. Gentleman ◽  
Peter W. Beardsmore ◽  
Stuart R. Mackenzie

The structures of gas-phase group nine cation–nitrous oxide metal–ligand complexes, M+(N2O)n (M = Co, Rh, Ir; n = 2–7) have been determined by a combination of infrared photodissociation spectroscopy and density functional theory.


2009 ◽  
Vol 87 (7) ◽  
pp. 974-983 ◽  
Author(s):  
Sarah R. Whittleton ◽  
Russell J. Boyd ◽  
T. Bruce Grindley

Density functional theory and second-order Møller–Plesset perturbation theory with effective core potentials have been used to calculate homolytic bond-dissociation enthalpies, D(Sn–X), of organotin compounds, and their performance has been assessed by comparison with available experimental bond enthalpies. The SDB-aug-cc-pVTZ basis set with its effective core potential was used to calculate the D(Sn–X) of a series of trimethyltin(IV) species, Me3Sn–X, where X = H, CH3, CH2CH3, NH2, OH, Cl, and F. This is the most comprehensive report to date of homolytic Sn–X bond-dissociation enthalpies (BDEs). Effective core potentials are then used to calculate thermodynamic parameters including donor–acceptor bond enthalpies, [Formula: see text], for a series of tin-ligand complexes, L2SnX4 (X = Br or Cl, L = py, dmf, or dmtf), which are compared with previous experimental and nonrelativistic computational results. Based on computational efficiency and accuracy, it is concluded that effective core potentials are appropriate computational methods to examine bonding in organotin systems.


2012 ◽  
Vol 31 (2) ◽  
pp. 200-208 ◽  
Author(s):  
Haizhu Yu ◽  
Dingjia Liu ◽  
Zhimin Dang ◽  
Dongrui Wang ◽  
Yao Fu

Sign in / Sign up

Export Citation Format

Share Document