Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy

1977 ◽  
Vol 61 (2) ◽  
pp. 252-261 ◽  
Author(s):  
Terry Magnuson ◽  
Anthony Demsey ◽  
Christopher W. Stackpole
Nucleus ◽  
2014 ◽  
Vol 5 (6) ◽  
pp. 601-612 ◽  
Author(s):  
Vincent Duheron ◽  
Guillaume Chatel ◽  
Ursula Sauder ◽  
Vesna Oliveri ◽  
Birthe Fahrenkrog

1987 ◽  
Vol 104 (3) ◽  
pp. 565-572 ◽  
Author(s):  
W T Gruijters ◽  
J Kistler ◽  
S Bullivant ◽  
D A Goodenough

Thin section electron microscopy reveals two different types of membrane interactions between the fiber cells of bovine lens. Monoclonal antibodies against lens membrane protein MP70 (Kistler et al., 1985, J. Cell Biol., 101:28-35) bound exclusively to the 16-17-nm intercellular junctions. MP70 localization was most dramatic in the lens outer cortex and strongly reduced deeper in the lens. In contrast, the 12-nm double membrane structures and single membranes were consistently unlabeled. In freeze-fracture replicas with adherent cortical fiber membranes, MP70 was immunolocalized in the junctional plaques which closely resemble the gap junctions in other tissues. MP70 is thus likely to be associated with intercellular communication in the lens.


1974 ◽  
Vol 63 (2) ◽  
pp. 567-586 ◽  
Author(s):  
John E. Rash ◽  
Mark H. Ellisman

The neuromuscular junctions and nonjunctional sarcolemmas of mammalian skeletal muscle fibers were studied by conventional thin-section electron microscopy and freeze-fracture techniques. A modified acetylcholinesterase staining procedure that is compatible with light microscopy, conventional thin-section electron microscopy, and freeze-fracture techniques is described. Freeze-fracture replicas were utilized to visualize the internal macromolecular architecture of the nerve terminal membrane, the chemically excitable neuromuscular junction postsynaptic folds, and the electrically excitable nonjunctional sarcolemma. The nerve terminal membrane is characterized by two parallel rows of 100–110-Å particles which may be associated with synpatic vesicle fusion and release. On the postsynpatic folds, irregular rows of densely packed 110–140-Å particles were observed and evidence is assembled which indicates that these large transmembrane macromolecules may represent the morphological correlate for functional acetylcholine receptor activity in mammalian motor endplates. Differences in the size and distribution of particles in mammalian as compared with amphibian and fish postsynaptic junctional membranes are correlated with current biochemical and electron micrograph autoradiographic data. Orthogonal arrays of 60-Å particles were observed in the split postsynaptic sarcolemmas of many diaphragm myofibers. On the basis of differences in the number and distribution of these "square" arrays within the sarcolemmas, two classes of fibers were identified in the diaphragm. Subsequent confirmation of the fiber types as fast- and slow-twitch fibers (Ellisman et al. 1974. J. Cell Biol. 63[2, Pt. 2]:93 a. [Abstr.]) may indicate a possible role for the square arrays in the electrogenic mechanism. Experiments in progress involving specific labeling techniques are expected to permit positive identification of many of these intriguing transmembrane macromolecules.


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


1984 ◽  
Vol 62 (9) ◽  
pp. 878-884 ◽  
Author(s):  
Toshihiro Fujii ◽  
Tatsuo Suzuki ◽  
Akira Hachimori ◽  
Michiyo Fujii ◽  
Yoshiyuki Kondo ◽  
...  

The interaction between polymerized tubulin from porcine brain and myosin from rabbit skeletal muscle was examined. The addition of myosin to the solution of tubulin polymerized by taxol resulted in a remarkable increase in turbidity within a few minutes at 37 °C, and a dense and stable precipitate was formed. The maximal molar ratio of tubulin bound to myosin was calculated to be about 4, while the value was about 2 when 6S tubulin was used. Both podophyllotoxin and colchicine suppressed the taxol-dependent increase of the binding of tubulin to myosin, but only when they were preincubated with tubulin prior to addition of taxol. 6S tubulin inhibited with aetin-activated Mg2+-ATPase activity of myosin, and polymerized tubulin inhibited the Mg-ATPase more than 6S tubulin. Dense precipitates of tubulin and myosin were observed by thin-section electron microscopy. Microtubules were observed to be entangled in myosin filaments and single microtubules were occasionally surrounded by five myosin filaments in a cross section, similar to actin–myosin arrays in muscle. After incubation of tubulin with myosin, taxol was able to induce tubulin polymerization in the same way as it polymerized microtubules in the absence of myosin.


1965 ◽  
Vol 25 (1) ◽  
pp. 139-150 ◽  
Author(s):  
Jack Maniloff ◽  
Harold J. Morowitz ◽  
Russell J. Barrnett

Thin-section electron microscopy, together with isolation of cellular organelles by differential centrifugation and chemical analysis, has been used to investigate the ultrastructure of the avian pleuropneumonia-like organism A5969. Each cell (approximate diameter 5500 A) was surrounded by a 150 A plasma membrane. In the center of the cell was an unbounded area, granular in appearance and containing the cell's DNA. The periphery of the cell contained granules of several different sizes and densities. The most dense particles (150 A) corresponded to the 78S ribosomes. These particles exhibited two predominant arrangements: (a) sometimes they showed cubic packing; (b) most arrays, however, were consistent with cylindrical arrangements of approximately 50 particles. Bundles of up to 18 arrays were observed. Structured blebs have been found protruding from the surface of log phase cells.


1985 ◽  
Vol 36 (3) ◽  
pp. 443 ◽  
Author(s):  
RM Harding ◽  
DS Teakle

The eggplant little-leaf agent was graft transmitted to tomato causing big-bud symptoms. Transmission from the big-bud tomato to potato by grafting or the leafhopper Orosius argentatus resulted in the development of purple top wilt symptoms. Thin-section electron microscopy revealed mycoplasma-like organisms present in the phloem sieve elements of a big-bud tomato plant and purple top wilt potato plants infected by grafting or leafhoppers. When tubers from graft-infected potato plants were planted, 73% produced spindly shoots and 44% of these later developed purple top wilt symptoms. When scions from either field-infected or experimentally infected potato plants showing purple top wilt symptoms were grafted onto tomato plants, 24% and 62% respectively developed big-bud symptoms. The results provide strong evidence for the mycoplasmal aetiology of some, if not all, potato purple top wilt in Queensland.


Sign in / Sign up

Export Citation Format

Share Document