Petrology and genetic significance of an ultramafic xenolith suite from Tahiti

1980 ◽  
Vol 48 (1) ◽  
pp. 80-96 ◽  
Author(s):  
Robert J. Tracy
Genetics ◽  
1992 ◽  
Vol 131 (2) ◽  
pp. 461-469 ◽  
Author(s):  
F W Schnell ◽  
C C Cockerham

Abstract In this article we investigate multiplicative effects between genes in relation to heterosis. The extensive literature on heterosis due to multiplicative effects between characters is reviewed, as is earlier work on the genetic description of heterosis. A two-locus diallelic model of arbitrary gene action is used to derive linear parameters for two multiplicative models. With multiplicative action between loci, epistatic effects are nonlinear functions of one-locus effects and the mean. With completely multiplicative action, the mean and additive effects form similar restrictions for all the rest of the effects. Extensions to more than two loci are indicated. The linear parameters of various models are then used to describe heterosis, which is taken as the difference between respective averages of a cross (F1) and its two parent populations (P). The difference (F2 - P) is also discussed. Two parts of heterosis are distinguished: part I arising from dominance, and part II due to additive x additive (a x a)-epistasis. Heterosis with multiplicative action between loci implies multiplicative accumulation of heterosis present at individual loci in part I, in addition to multiplicative (a x a)-interaction in part II. Heterosis with completely multiplicative action can only be negative (i.e., the F1 values must be less than the midparent), but the difference (F2 - P) can be positive under certain conditions. Heterosis without dominance can arise from multiplicative as well as any other nonadditive action between loci, as is exemplified by diminishing return interaction. The discussion enlarges the scope in various directions: the genetic significance of multiplicative models is considered.(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1123
Author(s):  
Carole Ayoub Moubareck

Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.


Sign in / Sign up

Export Citation Format

Share Document