Mode II stress intensity factor for layered material under arbitrary shear crack surface loading

1996 ◽  
Vol 55 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Sung Ho Kim ◽  
Kang Yong Lee ◽  
Moon Bok Park
1990 ◽  
Vol 57 (2) ◽  
pp. 354-358 ◽  
Author(s):  
An-Yu Kuo

Effects of crack surface heat conductance on stress intensity factors of modes I, II, and III are investigated. The crack problem is first solved by assuming perfect (infinite) heat conductance at crack surfaces. Finite heat conductance at crack surfaces is then accounted for by imposing a set of distributed dipoles at the crack surfaces. Distribution function of the dipoles is the solution of a Fredholm integral equation. It is shown that, for cracks in a homogeneous, isotropic, linear elastic solid, the degree of thermal conductivity at crack surfaces will affect the magnitude of mode I and mode II stress intensity factors but not mode III stress intensity factor. It is also shown that, for a geometrically symmetric cracked solid, only the mode II stress intensity factor will be influenced by different crack surface heat conductance even if the thermal loading is not symmetric. More importantly, for a given material thermal conductivity (K) and crack surface heat convection coefficient (h), effects of crack surface heat conductance on stress intensity factors is found to depend upon crack size. This “size effect” implies that, for a given set of K and h, an extremely small crack can be treated as if the crack surfaces are insulated and a very long crack can be treated as if the crack surfaces are perfectly heat conductive. As an example, the problem of a finite crack in an infinite plate subjected to a constant temperature gradient at infinity is studied.


2021 ◽  
Author(s):  
Jacob Biddlecom ◽  
Garrett J. Pataky

Abstract Carbon fiber reinforced polymers (CFRP) have been used in many high-performance applications where strength to weight ratio is an important characteristic. The goal of this research was to analyze the effects of Mode II, also known as shear loading, on the displacement fields surrounding a crack for unidirectional carbon fiber composites. Tensile and fatigue experiments were conducted on angled unidirectional CFRP coupled with digital image correlation (DIC) to analyze the full field displacement. Angled CFRP cracks experienced mixed mode loading which required addition insight due to the complex stresses on the fiber/matrix interface. The experimental displacement fields acquired from DIC were used as inputs for an anisotropic regression analysis to determine the mode I and mode II stress intensity factor ranges. The results from the regression analysis were used to predict the displacement fields around a crack. When comparing the experimental results with the predicted results, the inclusion of Mode II increased the agreement between predicted and experimental displacement fields around a crack tip for two different fiber orientation angles. Crack growth rate analysis and analytical stress intensity factor ranges were used to expand on the agreement of the results as well as bring to light CFRP specific fracture mechanisms that lead to disagreements.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4439
Author(s):  
Maciej Kotyk

The article presents the results of the author’s tests involving the determination of the maximal experimental value of the stress intensity factor KQ. This value was determined for a layered material obtained as the result of explosive welding of three alloys: AA2519, Ti6Al4V and AA1050, and separately for each material. In both cases tests were conducted for two temperatures—the ambient temperature (293 K), and cryogenic temperature (77 K). A model for initial assessment of the KQ value of AA2519–AA1050–Ti6Al4V (Al–Ti) layered material has also been presented. The proposed model has been developed so as to enable the determination of the curve course of load–COD for Al–Ti layered material using nominal stresses defined on the basis of a real load–COD course, obtained for the base materials, for both temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document