Changes in phosphoglucose isomerase activity in a developmental system

1963 ◽  
Vol 30 (3) ◽  
pp. 541-560 ◽  
Author(s):  
J.K. Bryan
2014 ◽  
Vol 27 (2) ◽  
pp. 127-130 ◽  
Author(s):  
Katarzyna Paradowska ◽  
Joanna Lutek ◽  
Grazyna Ginalska

Abstract The quest for new techniques for screening inhibitors of phosphoglucose isomerase is crucially important owing to therapeutic control of chronic bacterial infections associated with the biosynthesis of bacterial biofilm. According to the new method, yellowish zones against the purple background could be visually observed where phosphoglucose isomerase activity was inhibited. The new protocol with NADPH/NBT/PMS staining for TLC-autographic method was able to detect PGI inhibition by pure reference substance as mercury(II) chloride.


Author(s):  
Daniel Thomas MacKeigan ◽  
Tiffany Ni ◽  
Chuanbin Shen ◽  
Tyler William Stratton ◽  
Wenjing Ma ◽  
...  

: Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexinsemaphorin-integrin (PSI) domains of the integrin β subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the β3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.


Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 609-621
Author(s):  
Laura A Katz ◽  
Richard G Harrison

Two species of crickets, Gryllus veletis and G. pennsylvanicus, share six electrophoretic mobility classes for the enzyme phosphoglucose isomerase (PGI), despite evidence from other genetic markers that the two species are not closely related within eastern North American field crickets. Moreover, the frequencies of the two most common PGI electrophoretic classes (PGI-100 and PGI-65) covary in sympatric populations of these species in the eastern United States, suggesting that PGI may be subject to trans-specific balancing selection. To determine the molecular basis of the electrophoretic variation, we characterized the DNA sequence of the Pgi gene from 29 crickets (15 G. veletis and 14 G. pennsylvanicus). Amino acid substitutions that distinguish the electrophoretic classes are not the same in the two species, and there is no evidence that specific replacement substitutions represent trans-specific polymorphism. In particular, the amino acids that diagnose the PGI-65 allele relative to the PGI-100 allele differ both between G. veletis and G. pennsylvanicus and within G. pennsylvanicus. The heterogeneity among electrophoretic classes that covary in sympatric populations coupled with analysis of patterns of nucleotide variation suggest that Pgi is not evolving neutrally. Instead, the data are consistent with balancing selection operating on an emergent property of the PGI protein.


1971 ◽  
Vol 246 (24) ◽  
pp. 7586-7594
Author(s):  
Kenneth K. Tsuboi ◽  
Keiko Fukunaga ◽  
Charles H. Chervenka

1972 ◽  
Vol 247 (4) ◽  
pp. 1170-1179
Author(s):  
Michael N. Blackburn ◽  
John M. Chirgwin ◽  
Gordon T. James ◽  
Thomas D. Kempe ◽  
Thomas F. Parsons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document