Superoxide dismutase: an essential role in the protection of the nitrogen fixation process?

FEBS Letters ◽  
1986 ◽  
Vol 201 (2) ◽  
pp. 187-189 ◽  
Author(s):  
A. Puppo ◽  
J. Rigaud
2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


1993 ◽  
Vol 50 (2) ◽  
pp. 89-100 ◽  
Author(s):  
Lucia Banci ◽  
Maria Silvia Viezzoli ◽  
Diane E. Cabelli ◽  
Elizabeth D. Getzoff ◽  
Robert A. Hallewell

Author(s):  
José M. Palma ◽  
Fátima Terán ◽  
Alba Contreras-Ruiz ◽  
Marta Rodríguez-Ruiz ◽  
Francisco J Corpas

Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity has been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California type fruits, and three autochthonous Spanish varieties were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in pericarp and placenta from fruits showing that these phenyl-propanoids were mainly localized in placenta. The activity profile of catalase, superoxide dismutase (SOD, total and isoenzymatic), the enzymes of the ascorbate-glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with the capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidant, the role of an Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione content were higher in those pepper fruits which displayed the greater contents of capsacinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.


Agriculture ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 12 ◽  
Author(s):  
Jiangtao Hu ◽  
Yali Li ◽  
Ya Liu ◽  
Dong Il Kang ◽  
Hao Wei ◽  
...  

Hydrogen sulfide (H2S) is endogenously produced in plant cells and plays an essential role in root development. Given its potential for future agricultural applications, the optimal concentration of sodium hydrosulfide (NaHS, an H2S donor) and the potential mechanisms for root development in the strawberry ‘Seolhyang’ were investigated in this study. The results showed that NaHS with a concentration of 1.250 mM had a positive effect on root development in strawberry. Further experiments showed that exogenous NaHS elevated the H2S content in the root. The dry root weight was increased by the 1.250 mM NaHS treatment, but was reduced by the hypotaurine (an H2S scavenger) treatment. Similar changes were found between H2S and soluble sugar contents, indicating that H2S enhanced the accumulation of soluble sugar. Therefore, it is suggested that the accumulation of soluble sugar induced by H2S is either directly or indirectly involved in root development in strawberry during plug production. Moreover, superoxide dismutase was shown to have contributed to the elevated H2O2 contents. These results contribute to our understanding of the role that H2S plays and some of the relevant mechanisms in which H2S regulates root development.


1978 ◽  
Vol 174 (2) ◽  
pp. 373-377 ◽  
Author(s):  
L E A Henry ◽  
I N Gogotov ◽  
D O Hall

1. Superoxide dismutase activity was present in the heterocysts and vegetative cells of Anabaena cylindrica, but was always lower in the heterocysts. 2. No qualitative differences were found in the superoxide dismutase from the two cellular types. 3. Catalase activity was also present in both cellular types. 4. Most of the NADP reductase activity, as assayed with menadione or ferredoxin as electron acceptor, was localized within the heterocysts. 5. Studies on H2 consumption showed that most of the hydrogenase activity was associated with the heterocysts. 6. The results are discussed in terms of the postulate that superoxide dismutase and catalase are involved in the protection of the proton-donating systems participating in N2 fixation and H2 metabolism of heterocysts.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 878 ◽  
Author(s):  
José M. Palma ◽  
Fátima Terán ◽  
Alba Contreras-Ruiz ◽  
Marta Rodríguez-Ruiz ◽  
Francisco J. Corpas

Capsicum is the genus where a number of species and varieties have pungent features due to the exclusive content of capsaicinoids such as capsaicin and dihydrocapsaicin. In this work, the main enzymatic and non-enzymatic systems in pepper fruits from four varieties with different pungent capacity have been investigated at two ripening stages. Thus, a sweet pepper variety (Melchor) from California-type fruits and three autochthonous Spanish varieties which have different pungency levels were used, including Piquillo, Padrón and Alegría riojana. The capsaicinoids contents were determined in the pericarp and placenta from fruits, showing that these phenyl-propanoids were mainly localized in placenta. The activity profiles of catalase, total and isoenzymatic superoxide dismutase (SOD), the enzymes of the ascorbate–glutathione cycle (AGC) and four NADP-dehydrogenases indicate that some interaction with capsaicinoid metabolism seems to occur. Among the results obtained on enzymatic antioxidants, the role of Fe-SOD and the glutathione reductase from the AGC is highlighted. Additionally, it was found that ascorbate and glutathione contents were higher in those pepper fruits which displayed the greater contents of capsaicinoids. Taken together, all these data indicate that antioxidants may contribute to preserve capsaicinoids metabolism to maintain their functionality in a framework where NADPH is perhaps playing an essential role.


2017 ◽  
Vol 175 ◽  
pp. 208-216 ◽  
Author(s):  
Mami Fukuoka ◽  
Eiichi Tokuda ◽  
Kenta Nakagome ◽  
Zhiliang Wu ◽  
Isao Nagano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document