scholarly journals Thyroid hormone differentially affects mRNA levels of Ca-ATPase isozymes of sarcoplasmic reticulum in fast and slow skeletal muscle

FEBS Letters ◽  
1990 ◽  
Vol 274 (1-2) ◽  
pp. 73-76 ◽  
1994 ◽  
Vol 303 (2) ◽  
pp. 467-474 ◽  
Author(s):  
M H M Thelen ◽  
A Muller ◽  
M J Zuidwijk ◽  
G C van der Linden ◽  
W S Simonides ◽  
...  

The aim of this study was to investigate the mechanism(s) underlying the thyroid-hormone (L-tri-iodothyronine, T3)-induced elevation of fast-type sarcoplasmic-reticulum Ca(2+)-ATPase (SERCA1) levels in L6 myotubes and the potentiating effect of insulin-like growth factor-I (IGF-I) [Muller, van Hardeveld, Simonides and van Rijn (1991) Biochem. J. 275, 35-40]. T3 increased the SERCA1 protein level (per microgram of DNA) by 160%. The concomitant increase in the SERCA1 mRNA level was somewhat higher (240%). IGF-I also increased SERCA1 protein (110%) and mRNA levels (50%), whereas IGF-I + T3 increased SERCA1 protein and mRNA levels by 410% and 380% respectively. These SERCA1 mRNA analyses show that the more-than-additive action of T3 and IGF-I on SERCA1 expression is, at least in part, pre-translational in nature. Further studies showed that the half-life of SERCA1 protein in L6 cells (17.5 h) was not altered by T3. In contrast, IGF-I prolonged the half-life of SERCA1 protein 1.5-1.9-fold, which may contribute to the disproportional increase in SERCA1 protein content compared with mRNA by IGF-I. Measurements of SERCA1 mRNA half-life (as determined by actinomycin D chase) showed no difference from the control values (15.5 h) in the presence of T3 or IGF-I alone. When T3 and IGF-I were both present, the SERCA1 mRNA half-life was prolonged 2-fold. No significant effects of T3 and IGF-I were observed on the half-life of total protein (37.4 h) and total RNA (37.0 h). The absence of an effect of T3 on SERCA1 protein and mRNA stability, when it was present alone, suggested transcriptional regulation, which was confirmed by nuclear run-on experiments, showing a 3-fold increase in transcription frequency of the SERCA1 gene by T3. We conclude that the synergistic stimulating effects of T3 and IGF-I on SERCA1 expression are the result of both transcriptional and post-transcriptional regulation. T3 acts primarily at the transcriptional level by increasing the transcription frequency of the SERCA1 gene, whereas IGF-I seems to act predominantly at post-transcriptional levels by enhancing SERCA1 protein and mRNA stability, the latter, however, only in the presence of T3.


2000 ◽  
Vol 278 (4) ◽  
pp. E738-E743 ◽  
Author(s):  
Bernd Gloss ◽  
Sonia Villegas ◽  
Francisco J. Villarreal ◽  
Anselmo Moriscot ◽  
Wolfgang H. Dillmann

We investigated the effects of the leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) on 3,3′, 5-triiodo-l-thyronine, or thyroid hormone (T3)-stimulated sarcoplasmic reticulum Ca2+ATPase (SERCA2) gene expression on cultured neonatal rat cardiac myocytes. A reduction of T3 induced increases in SERCA2 mRNA levels after co-treatment with LIF or IL-6. To investigate for the molecular mechanism(s) responsible for the blunted gene expression, a 3.2-kb SERCA2 promoter construct containing a reporter gene was transfected into cardiac myocytes. T3 treatment stimulated transcriptional activity twofold, whereas co-treatment with T3 and either of the cytokines caused an inhibition of T3-induced SERCA2 transcriptional activity. A T3-responsive 0.6-kb SERCA2 construct also showed a similar inhibition by cytokines. Cytokine inhibition of SERCA2 transcriptional activity was also evident when a 0.6-kb SERCA2 mutant, T3-unresponsive promoter construct was used. Treatment with T3 and cytokines showed a significant decrease in transcription when a reporter construct was used that was comprised of direct repeats of SERCA2 thyroid response element I. These data provide evidence for cytokine-mediated inhibitory effects on the SERCA2 promoter that may be mediated by interfering with T3action.


Sign in / Sign up

Export Citation Format

Share Document