mrna half life
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 15)

H-INDEX

31
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Paul J. Russell ◽  
Jacob A. Slivka ◽  
Elaina P. Boyle ◽  
Arthur H.M. Burghes ◽  
Michael G. Kearse

It is estimated that nearly 50% of mammalian transcripts contain at least one upstream open reading frame (uORF), which are typically one to two orders of magnitude smaller than the downstream main ORF. Most uORFs are thought to be inhibitory as they sequester the scanning ribosome, but in some cases allow for translation re-initiation. However, termination in the 5ʹ UTR at the end of uORFs resembles pre-mature termination that is normally sensed by the nonsense-mediated mRNA decay (NMD) pathway. Translation re-initiation has been proposed as a method for mRNAs to prevent NMD. Here we test how uORF length influences translation re-initiation and mRNA stability. Using custom 5ʹ UTRs and uORF sequences, we show that re-initiation can occur on heterologous mRNA sequences, favors small uORFs, and is supported when initiation occurs with more initiation factors. After determining reporter mRNA half-lives and mining available mRNA half-life datasets for cumulative uORF length, we conclude that translation re-initiation after uORFs is not a robust method for mRNAs to evade NMD. Together, these data support a model where uORFs have evolved to balance coding capacity, translational control, and mRNA stability.


2021 ◽  
Vol 118 (51) ◽  
pp. e2026362118
Author(s):  
Ajeet K. Sharma ◽  
Johannes Venezian ◽  
Ayala Shiber ◽  
Günter Kramer ◽  
Bernd Bukau ◽  
...  

The presence of a single cluster of nonoptimal codons was found to decrease a transcript’s half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae. The impact of multiple nonoptimal codon clusters on a transcript’s half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5′ end can lead to synergistic effects that increase a messenger RNA’s (mRNA’s) half-life in S. cerevisiae. Specifically, the 5′ end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 5′ end is the primary determinant of mRNA half-life. These results suggest the “translational ramp,” in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.


2021 ◽  
Author(s):  
Deivid Carvalho Rodrigues ◽  
Marat Mufteev ◽  
Kyoko E Yuki ◽  
Ashrut Narula ◽  
Wei Wei ◽  
...  

Models of MECP2 dysfunction in Rett syndrome (RTT) assume that transcription rate changes directly correlate with altered steady-state mRNA levels. However, limited evidence suggests that transcription rate changes are buffered by poorly understood compensatory post-transcriptional mechanisms. Here we measure transcription rate and mRNA half-life changes in RTT patient neurons using RATE-seq, and reinterpret nuclear and whole-cell RNAseq from Mecp2 mice. Genes are dysregulated by changing transcription rate only or half-life only and are buffered when both are changed. We utilized classifier models to understand the direction of transcription rate changes based on gene-body DNA sequence, and combined frequencies of three dinucleotides were better predictors than contributions by CA and CG. MicroRNA and RNA-Binding Protein (RBP) motifs were enriched in 3ʹUTRs of genes with half-life changes. Motifs for nuclear localized RBPs were enriched on buffered genes with increased transcription rate. Our findings identify post-transcriptional mechanisms in humans and mice that alter half-life only or buffer transcription rate changes when a transcriptional modulator gene is mutated in a neurodevelopmental disorder.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabian Poetz ◽  
Joshua Corbo ◽  
Yevgen Levdansky ◽  
Alexander Spiegelhalter ◽  
Doris Lindner ◽  
...  

AbstractThe CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.


2021 ◽  
Author(s):  
Eric Esposito ◽  
Douglas E. Weidemann ◽  
Jessie M. Rogers ◽  
Claire M. Morton ◽  
Erod Keaton Baybay ◽  
...  

AbstractThe mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Proper functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about SAC gene expression. Here, we show in fission yeast (S. pombe) that a combination of short mRNA half-lives and long protein half-lives supports stable SAC protein levels. For the SAC genes mad2+ and mad3+, their short mRNA half-lives depend on a high frequency of non-optimal codons and mRNA destabilization mediated through the RNA helicase Ste13 (S.c. Dhh1). In contrast, mad1+ mRNA half-life is short despite a relatively high frequency of optimal codons and despite the lack of known destabilizing motifs in its mRNA. Hence, although they are functionally related, different SAC genes employ different strategies of expression. Taken together, we propose that the codon usage of SAC genes is fine-tuned for proper SAC function. Our work shines light on the gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.


FEBS Journal ◽  
2020 ◽  
Author(s):  
Sudipto Basu ◽  
Saurav Mallik ◽  
Suman Hait ◽  
Sudip Kundu

2020 ◽  
Vol 202 (9) ◽  
Author(s):  
Tien G. Nguyen ◽  
Diego A. Vargas-Blanco ◽  
Louis A. Roberts ◽  
Scarlet S. Shell

ABSTRACT Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5′ untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5′ UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5′ UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5′ UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5′ UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium’s survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5′ untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5′ untranslated regions and are unusually prevalent in mycobacteria.


2020 ◽  
Author(s):  
Sudipto Basu ◽  
Saurav Mallik ◽  
Suman Hait ◽  
Sudip Kundu

AbstractPrecise control of protein and mRNA degradation is essential for cellular metabolism and homeostasis. Controlled and specific degradation of both molecular species necessitates their engagements with the respective degradation machineries; this engagement involves a disordered/unstructured segment of the substrate traversing the degradation tunnel of the machinery and accessing the catalytic sites. Here, we report that mRNAs comprising longer terminal and/or internal unstructured segments have significantly shorter half-lives; the lengths of the 5′ terminal, 3′ terminal and internal unstructured segments that affect mRNA half-life are compatible with molecular structures of the 5′ exo- 3′ exo- and endo-ribonuclease machineries. Sequestration into ribonucleoprotein complexes elongates mRNA half-life, presumably by burying ribonuclease engagement sites under oligomeric interfaces. After gene duplication, differences in terminal unstructured lengths, proportions of internal unstructured segments and oligomerization modes result in significantly altered half-lives of paralogous mRNAs. Side-by-side comparison of molecular principles underlying controlled protein and mRNA degradation unravels their remarkable mechanistic similarities, and suggests how the intrinsic structural features of the two molecular species regulate their half-lives on genome-scale and during evolution.


2020 ◽  
Vol 75 (5) ◽  
pp. 1151-1158
Author(s):  
Corey S Suelter ◽  
Nancy D Hanson

Abstract Background Virulence genes and the expression of resistance mechanisms undoubtedly play a role in the successful spread of the pandemic clone Escherichia coli ST131. Porin down-regulation is a chromosomal mechanism associated with antibiotic resistance. Translation of porin proteins can be impacted by modifications in mRNA half-life and the interaction among small RNAs (sRNAs), the porin transcript and the sRNA chaperone Hfq. Modifications in the translatability of porin proteins could impact the fitness and therefore the success of E. coli ST131 isolates in the presence of antibiotic. Objectives To identify differences in the translatability of OmpC and OmpF porins for different STs of E. coli by comparing steady-state RNA levels, mRNA half-life, regulatory sRNA expression and protein production. Methods RNA expression was evaluated using real-time RT–PCR and OmpC mRNA half-life by northern blotting. OmpC, OmpF and Hfq protein levels were evaluated by immunoblotting. Results Differences between ST131 and non-ST131 isolates included: (i) the level of OmpC RNA and protein produced with mRNA expression higher for ST131 but OmpC protein levels lower compared with non-ST131 isolates; (ii) OmpC mRNA half-life (21–30 min for ST131 isolates compared with <2–23 min for non-ST131 isolates); and (iii) levels of the sRNA MicC (2- to 120-fold for ST131 isolates compared with −4- to 70-fold for non-ST131 isolates). Conclusions Mechanisms involved in the translatability of porin proteins differed among different STs of E. coli. These differences could provide a selective advantage to ST131 E. coli when confronted with an antibiotic-rich environment.


2019 ◽  
Author(s):  
Tien G. Nguyen ◽  
Diego A. Vargas-Blanco ◽  
Louis A. Roberts ◽  
Scarlet S. Shell

ABSTRACTRegulation of gene expression is critical for the pathogen Mycobacterium tuberculosis to tolerate stressors encountered during infection, and for non-pathogenic mycobacteria such as Mycobacterium smegmatis to survive stressors encountered in the environment. Unlike better studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5’ UTRs to mRNA half-life and translation efficiency are similarly unknown. In both M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by an unstable transcript with a relatively short half-life. We hypothesized that sigA’s long 5’ UTR caused this instability. To test this, we constructed fluorescence reporters and then measured protein abundance, mRNA abundance, and mRNA half-life. From these data we also calculated relative transcription rates. We found that the sigA 5’ UTR confers an increased transcription rate, a shorter mRNA half-life, and a decreased translation rate compared to a synthetic 5’ UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts produced less protein compared to any of the leadered transcripts. However, translation rates were similar to those of transcripts with the sigA 5’ UTR, and the protein levels were instead explained by lower transcript abundance. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein:mRNA ratios for natural leadered and leaderless transcripts, consistent with the idea that variability in translation efficiency among mycobacterial genes is largely driven by factors other than leader status. The variability in mRNA half-life and predicted transcription rate among our constructs could not be explained by their different translation efficiencies, indicating that other factors are responsible for these properties and highlighting the myriad and complex roles played by 5’ UTRs and other sequences downstream of transcription start sites.


Sign in / Sign up

Export Citation Format

Share Document