scholarly journals A Drosophila nuclear localisation signal included in an 18 amino acid fragment from the serendipity δ zinc finger protein

FEBS Letters ◽  
1991 ◽  
Vol 280 (1) ◽  
pp. 167-170 ◽  
Author(s):  
Stéphane Noselli ◽  
Alain Vincent
1990 ◽  
Vol 10 (8) ◽  
pp. 4401-4405 ◽  
Author(s):  
N Kato ◽  
K Shimotohno ◽  
D VanLeeuwen ◽  
M Cohen

RNA transcripts of the HERV-R (ERV3) human provirus that are abundant in placenta but absent in choriocarcinoma contain nonproviral genomic sequences at their 3' ends. We report here the isolation of cDNA clones of these genomic sequences. The transcripts encode a Krüppel-related zinc finger protein consisting of a unique leader region and more than 12 28-amino-acid finger motifs.


Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 905-916 ◽  
Author(s):  
M Crozatier ◽  
K Kongsuwan ◽  
P Ferrer ◽  
J R Merriam ◽  
J A Lengyel ◽  
...  

Abstract The Drosophila serendipity (sry) delta (delta) zinc finger protein is a sequence-specific DNA binding protein, maternally inherited by the embryo and present in nuclei of transcriptionally active cells throughout fly development. We report here the isolation and characterization of four ethyl methanesulfate-induced zygotic lethal mutations of different strengths in the sry delta gene. For the stronger allele, all of the lethality occurs during late embryogenesis or the first larval instar. In the cases of the three weaker alleles, most of the lethality occurs during pupation; moreover, those adult escapers that emerge are sterile males lacking partially or completely in spermatozoa bundles. Genetic analysis of sry delta thus indicates that it is an essential gene, whose continued expression throughout the life cycle, notably during embryogenesis and pupal stage, is required for viability. Phenotypic analysis of sry delta hemizygote escaper males further suggests that sry delta may be involved in regulation of two different sets of genes: genes required for viability and genes involved in gonadal development. All four sry delta alleles are fully rescued by a wild-type copy of sry delta, but not by an additional copy of the sry beta gene, reinforcing the view that, although structurally related, these two genes exert distinct functions. Molecular characterization of the four sry delta mutations revealed that these mutations correspond to single amino acid replacements in the sry delta protein. Three of these replacements map to the same (third out of seven) zinc finger in the carboxy-terminal DNA binding domain; interestingly, none affects the zinc finger consensus residues. The fourth mutation is located in the NH2-proximal part of the protein, in a domain proposed to be involved in specific protein-protein interactions.


Author(s):  
Mazen Hamed ◽  
Reema Siam ◽  
Roza Zaid

Zinc finger proteins (ZFP) play important roles in cellular processes. The DNA binding region of ZFP consists of 3 zinc finger DNA binding domains connected by amino acid linkers, the sequence TGQKP connects ZF1 and ZF2, and TGEKP connects ZF2 with ZF3. Linkers act to tune the zinc finger protein in the right position to bind its DNA target, the type of amino acid residues and length of linkers reflect on ZF1-ZF2-ZF3 interactions and contribute to the search and recognition process of ZF protein to its DNA target. Linker mutations and the affinity of the resulting mutants to specific and nonspecific DNA targets were studied by MD simulations and MM_GB(PB)SA. The affinity of mutants to DNA varied with type and position of amino acid residue. Mutation of K in TGQKP resulted in loss in affinity due to the loss of positive K interaction with phosphates, mutation of G showed loss in affinity to DNA, WT protein and all linker mutants showed loss in affinity to a nonspecific DNA target, this finding confirms previous reports which interpreted this loss in affinity as due to ZF1 having an anchoring role, and ZF3 playing an explorer role in the binding mechanism. The change in ZFP-DNA affinity with linker mutations is discussed in view of protein structure and role of linker residues in binding.


1990 ◽  
Vol 10 (8) ◽  
pp. 4401-4405 ◽  
Author(s):  
N Kato ◽  
K Shimotohno ◽  
D VanLeeuwen ◽  
M Cohen

RNA transcripts of the HERV-R (ERV3) human provirus that are abundant in placenta but absent in choriocarcinoma contain nonproviral genomic sequences at their 3' ends. We report here the isolation of cDNA clones of these genomic sequences. The transcripts encode a Krüppel-related zinc finger protein consisting of a unique leader region and more than 12 28-amino-acid finger motifs.


Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3645-3656 ◽  
Author(s):  
Ryan B. Green ◽  
Victor Hatini ◽  
Katherine A. Johansen ◽  
Xue-Jun Liu ◽  
Judith A. Lengyel

Elongation of the Drosophila embryonic hindgut epithelium occurs by a process of oriented cell rearrangement requiring the genes drumstick (drm) and lines (lin). The elongating hindgut becomes subdivided into domains – small intestine, large intestine and rectum – each characterized by a specific pattern of gene expression dependent upon normal drm and lin function. We show that drm encodes an 81 amino acid (10 kDa) zinc finger protein that is a member of the Odd-skipped family. drm expression is localized to the developing midgut-hindgut junction and is required to establish the small intestine, while lin is broadly expressed throughout the gut primordium and represses small intestine fate. lin is epistatic to drm, suggesting a model in which localized expression of drm blocks lin activity, thereby allowing small intestine fate to be established. Further supporting this model, ectopic expression of Drm throughout the hindgut produces a lin phenotype. Biochemical and genetic data indicate that the first conserved zinc finger of Drm is essential for its function. We have thus defined a pathway in which a spatially localized zinc finger protein antagonizes a globally expressed protein, thereby leading to specification of a domain (the small intestine) necessary for oriented cell rearrangement.


Sign in / Sign up

Export Citation Format

Share Document