Drumstick is a zinc finger protein that antagonizes Lines to control patterning and morphogenesis of theDrosophilahindgut

Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3645-3656 ◽  
Author(s):  
Ryan B. Green ◽  
Victor Hatini ◽  
Katherine A. Johansen ◽  
Xue-Jun Liu ◽  
Judith A. Lengyel

Elongation of the Drosophila embryonic hindgut epithelium occurs by a process of oriented cell rearrangement requiring the genes drumstick (drm) and lines (lin). The elongating hindgut becomes subdivided into domains – small intestine, large intestine and rectum – each characterized by a specific pattern of gene expression dependent upon normal drm and lin function. We show that drm encodes an 81 amino acid (10 kDa) zinc finger protein that is a member of the Odd-skipped family. drm expression is localized to the developing midgut-hindgut junction and is required to establish the small intestine, while lin is broadly expressed throughout the gut primordium and represses small intestine fate. lin is epistatic to drm, suggesting a model in which localized expression of drm blocks lin activity, thereby allowing small intestine fate to be established. Further supporting this model, ectopic expression of Drm throughout the hindgut produces a lin phenotype. Biochemical and genetic data indicate that the first conserved zinc finger of Drm is essential for its function. We have thus defined a pathway in which a spatially localized zinc finger protein antagonizes a globally expressed protein, thereby leading to specification of a domain (the small intestine) necessary for oriented cell rearrangement.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanlu Liu ◽  
Javier Gallego-Bartolomé ◽  
Yuxing Zhou ◽  
Zhenhui Zhong ◽  
Ming Wang ◽  
...  

AbstractThe ability to target epigenetic marks like DNA methylation to specific loci is important in both basic research and in crop plant engineering. However, heritability of targeted DNA methylation, how it impacts gene expression, and which epigenetic features are required for proper establishment are mostly unknown. Here, we show that targeting the CG-specific methyltransferase M.SssI with an artificial zinc finger protein can establish heritable CG methylation and silencing of a targeted locus in Arabidopsis. In addition, we observe highly heritable widespread ectopic CG methylation mainly over euchromatic regions. This hypermethylation shows little effect on transcription while it triggers a mild but significant reduction in the accumulation of H2A.Z and H3K27me3. Moreover, ectopic methylation occurs preferentially at less open chromatin that lacks positive histone marks. These results outline general principles of the heritability and interaction of CG methylation with other epigenomic features that should help guide future efforts to engineer epigenomes.


1997 ◽  
Vol 56 ◽  
pp. 348
Author(s):  
E.L. Decker ◽  
C. Skerka ◽  
P.F. Zipfel

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 943-952 ◽  
Author(s):  
X. Cui ◽  
C.Q. Doe

Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast ‘sublineages’), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.


1990 ◽  
Vol 10 (8) ◽  
pp. 4401-4405 ◽  
Author(s):  
N Kato ◽  
K Shimotohno ◽  
D VanLeeuwen ◽  
M Cohen

RNA transcripts of the HERV-R (ERV3) human provirus that are abundant in placenta but absent in choriocarcinoma contain nonproviral genomic sequences at their 3' ends. We report here the isolation of cDNA clones of these genomic sequences. The transcripts encode a Krüppel-related zinc finger protein consisting of a unique leader region and more than 12 28-amino-acid finger motifs.


Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 905-916 ◽  
Author(s):  
M Crozatier ◽  
K Kongsuwan ◽  
P Ferrer ◽  
J R Merriam ◽  
J A Lengyel ◽  
...  

Abstract The Drosophila serendipity (sry) delta (delta) zinc finger protein is a sequence-specific DNA binding protein, maternally inherited by the embryo and present in nuclei of transcriptionally active cells throughout fly development. We report here the isolation and characterization of four ethyl methanesulfate-induced zygotic lethal mutations of different strengths in the sry delta gene. For the stronger allele, all of the lethality occurs during late embryogenesis or the first larval instar. In the cases of the three weaker alleles, most of the lethality occurs during pupation; moreover, those adult escapers that emerge are sterile males lacking partially or completely in spermatozoa bundles. Genetic analysis of sry delta thus indicates that it is an essential gene, whose continued expression throughout the life cycle, notably during embryogenesis and pupal stage, is required for viability. Phenotypic analysis of sry delta hemizygote escaper males further suggests that sry delta may be involved in regulation of two different sets of genes: genes required for viability and genes involved in gonadal development. All four sry delta alleles are fully rescued by a wild-type copy of sry delta, but not by an additional copy of the sry beta gene, reinforcing the view that, although structurally related, these two genes exert distinct functions. Molecular characterization of the four sry delta mutations revealed that these mutations correspond to single amino acid replacements in the sry delta protein. Three of these replacements map to the same (third out of seven) zinc finger in the carboxy-terminal DNA binding domain; interestingly, none affects the zinc finger consensus residues. The fourth mutation is located in the NH2-proximal part of the protein, in a domain proposed to be involved in specific protein-protein interactions.


1998 ◽  
Vol 18 (6) ◽  
pp. 3120-3129 ◽  
Author(s):  
Youngsook Lee ◽  
Tetsuo Shioi ◽  
Hideko Kasahara ◽  
Shawn M. Jobe ◽  
Russell J. Wiese ◽  
...  

ABSTRACT Specification and differentiation of the cardiac muscle lineage appear to require a combinatorial network of many factors. The cardiac muscle-restricted homeobox protein Csx/Nkx2.5 (Csx) is expressed in the precardiac mesoderm as well as the embryonic and adult heart. Targeted disruption of Csx causes embryonic lethality due to abnormal heart morphogenesis. The zinc finger transcription factor GATA4 is also expressed in the heart and has been shown to be essential for heart tube formation. GATA4 is known to activate many cardiac tissue-restricted genes. In this study, we tested whether Csx and GATA4 physically associate and cooperatively activate transcription of a target gene. Coimmunoprecipitation experiments demonstrate that Csx and GATA4 associate intracellularly. Interestingly, in vitro protein-protein interaction studies indicate that helix III of the homeodomain of Csx is required to interact with GATA4 and that the carboxy-terminal zinc finger of GATA4 is necessary to associate with Csx. Both regions are known to directly contact the cognate DNA sequences. The promoter-enhancer region of the atrial natriuretic factor (ANF) contains several putative Csx binding sites and consensus GATA4 binding sites. Transient-transfection assays indicate that Csx can activate ANF reporter gene expression to the same extent that GATA4 does in a DNA binding site-dependent manner. Coexpression of Csx and GATA4 synergistically activates ANF reporter gene expression. Mutational analyses suggest that this synergy requires both factors to fully retain their transcriptional activities, including the cofactor binding activity. These results demonstrate the first example of homeoprotein and zinc finger protein interaction in vertebrates to cooperatively regulate target gene expression. Such synergistic interaction among tissue-restricted transcription factors may be an important mechanism to reinforce tissue-specific developmental pathways.


Sign in / Sign up

Export Citation Format

Share Document