Fine structure of the secretory activity of the pars intermedia of Rana pipiens

1974 ◽  
Vol 23 (1) ◽  
pp. 94-110 ◽  
Author(s):  
Elizabeth K. Perryman
Author(s):  
J. E. Lai-Fook

Dermal glands are epidermal derivatives which are reported to secrete either the cement layer, which is the outermost layer of the epicuticle or some component of the moulting fluid which digests the endocuticle. The secretions do not show well-defined staining reactions and therefore they have not been positively identified. This has contributed to another difficulty, namely, that of determining the time of secretory activity. This description of the fine structure of the developing glands in Rhodnius was undertaken to determine the time of activity, with a view to investigating their function.


1964 ◽  
Vol s3-105 (69) ◽  
pp. 7-11
Author(s):  
WILLIAM L. DOYLE ◽  
G. FRANCES McNIELL

The delicate tubules of the respiratory tree consist of 4 layers: a lining epithelium, a thick mucoid layer containing collagenous filaments, a smooth muscle net, and a coelomic epithelium. The free surfaces of both epithelia have well developed plasmodesms. Amoebocytes are present in all layers and the spherules of one type are considered to be precursors of the mucoid substance; another amoebocyte may be a fibroblast. Perpendicularly oriented smooth muscle fibres, as well as those parallel to each other, are linked by desmosomes ensuring synchronous contraction. Secretory activity is evident in distended cisternae of the endoplasmic reticulum of certain epithelial cells and in the vacuoles of the lining epithelium.


Parasitology ◽  
1969 ◽  
Vol 59 (2) ◽  
pp. 461-467 ◽  
Author(s):  
R. A. Wilson

The fine structure of the flame cells, tubules and excretory pore of the miracidium of Fasciola hepatica are described. The tubules are formed from the flattened surfaces of cells rolled round and joined at their tips by a desmosome. Vesicles are present in the wall of the tubule, possibly indicating secretory activity. Clubshaped microvilli are present only in the terminal region near the excretory pore. Possible functions of the system are discussed.


1962 ◽  
Vol 12 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Allen C. Enders

Corpora lutea from the period of delayed implantation and from early postimplantation stages of the armadillo, mink, and rat were fixed in buffered osmium tetroxide-sucrose or potassium permanganate. After rapid dehydration, the portions of the corpora lutea were embedded in either methacrylate or epoxy resin. Examination of the lutein cells by electron microscopy revealed the presence, in the better preserved material, of an extensive development of tubular agranular endoplasmic reticulum. Although the membranes of the endoplasmic reticulum are the most striking feature of the lutein cells of both stages of the three animals examined, very numerous large mitochondria with cristae that exhibit a variety of forms tending toward villiform, and protrusions and foldings of the lutein cell margins on the pericapillary space are also characteristic of these cells. Certain minor differences in the lutein cells of the species examined are also noted. No indications of conversion of mitochondria into lipid, of accumulation of lipid in the Golgi area, or of the protrusion of lutein cells into spaces between the endothelial cells, as suggested by other authors, were noted in these preparations. Some of the difficulties inherent in the visualization of the secretory activity of cells producing steroid hormones are briefly discussed.


Author(s):  
Robert Giaquinta ◽  
M. A. Hayat

The ultrastructural changes that occur in the intestinal absorptive cells during amphibian metamorphosis have been reported (Bonneville, 1963). These changes accompany a change in diet (from an herbivorous to a carnivorous state) during metamorphosis. Little information is available, however, on the ultrastructural changes in the absorptive cells of amphibians in relation to the state of feeding. This report describes the differences in the fine structure of these cells in the tadpole stage of Rana pipiens during periods of food absorption and fasting.Rana pipiens at tadpole stages were fed an herbivorous diet, and after a period of 48 hr, the animal was dissected and segments of the small intestine were collected for electron microscopy. A second group of tadpoles was fasted for 7 days, and segments of the small intestine were collected. The tissue specimens were immersed in phosphate-buffered glutaraldehyde (3%) for 1 hr at 4C and postfixed with phosphate-buffered osmium tetroxide (2%) for 1 hr at 4C.


Parasitology ◽  
1981 ◽  
Vol 82 (3) ◽  
pp. 445-458 ◽  
Author(s):  
I. Fairweather ◽  
L. T. Threadgold

SUMMARYThe fine structure of the oncosphere of Hymenolepis nana has been investigated by transmission and scanning electron microscopy, together with light microscope observations of JB–4 embedded material. The outer surface of the oncosphere is covered by an epithelial layer, termed the embryonic epithelium. Cell types present within the oncosphere include the penetration gland cell, oncoblast, or hook-forming cells, nerve cells, muscle cells (both somatic and hook), and undifferentiated ‘stem’ cells. The penetration gland is a large, U-shaped structure, situated in the anterior region of the oncosphere, and filled with secretory granules of 2 distinct morphological types. Histochemically, the secretory material yields reactions characteristic of an acid mucopolysaccharide. A proteinaceous-substance and small amounts of glycogen are also present. Up to 4 pairs of ducts from the penetration gland have been observed. They pass through the basal lamina and the epithelial layer to open against the polar filament layer at the anterior end of the oncosphere. Nerve cells are described in a cestode oncosphere for the first time. The cells are paraldehyde-fuchsin-positive and show a high level of secretory activity, as evidenced by the large numbers of dense-cored vesicles produced by the Golgi apparatus in the perikarya; consequently, they are tentatively regarded as possible neurosecretory cells. The vesicles are transported down the axon to be stored in specialized swollen axon terminals, which form definite junctions with the muscle cells.


Sign in / Sign up

Export Citation Format

Share Document