rhodnius prolixus
Recently Published Documents


TOTAL DOCUMENTS

1129
(FIVE YEARS 109)

H-INDEX

56
(FIVE YEARS 6)

Author(s):  
Jose Manuel Latorre-Estivalis ◽  
Ewald Große-Wilde ◽  
Gabriel da Rocha Fernandes ◽  
Bill S. Hansson ◽  
Marcelo Gustavo Lorenzo

Peptides ◽  
2021 ◽  
pp. 170710
Author(s):  
Areej N. Al-Dailami ◽  
Jimena Leyria ◽  
Ian Orchard ◽  
Angela B. Lange

2021 ◽  
Author(s):  
Gustavo Lázari Cacini ◽  
Jader de Oliveira ◽  
Tiago Belintani ◽  
Éder dos Santos Souza ◽  
Nicoly Olaia ◽  
...  

Abstract Background: Among the 18 genera of the Triatominae subfamily, three stand out for their diversity and epidemiological importance: Triatoma, Panstrongylus, and Rhodnius. The genus Rhodnius includes 21 species that can transmit Trypanosoma cruzi (the etiological agent of Chagas disease, also known as American trypanosomiasis) and Trypanosoma rangeli. The Rhodnius prolixus complex comprises seven species, including Rhodnius marabaensis, Rhodnius prolixus, and Rhodnius robustus, which occur in Northern region of Brazil. Since both adults and immatures can carry T. cruzi, in this study the five nymphal instars of the three species mentioned were dorsally characterized. Methods: By means of light microscopy, morphometrics and geometric morphometrics, the present work measures and describes the morphological characters of the five nymphal instars of Rhodnius marabaensis, Rhodnius prolixus, and Rhodnius robustus. Results: The study allowed the characterization of all the five nymphal instars, as well as the distinction between the three species in each of their instars. Conclusions: The morphological, morphometrics of the head, thorax, and abdomen and geometric morphometrics studies of the head enabled the specific distinction of these three species in all the five instars.


2021 ◽  
Vol 2 ◽  
Author(s):  
Géssica Sousa ◽  
Stephanie Serafim de Carvalho ◽  
Georgia Correa Atella

The interaction between Rhodnius prolixus and Trypanosoma cruzi has huge medical importance because it responds to the transmission of Chagas disease, a neglected tropical disease that affects about eight million people worldwide. It is known that trypanosomatid pathogens depend on active lipid endocytosis from the insect host to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs was largely unknown. Herein, the biochemical and molecular dynamics of the triatomine R. prolixus lipid metabolism in response to T. cruzi acute infection were investigated. A qRT-PCR approach was used to determine the expression profile of 12 protein-coding genes involved in R. prolixus lipid physiology. In addition, microscopic and biochemical assays revealed the lipid droplet profile and the levels of the different identified lipid classes. Finally, spectrometry analyses were used to determine fatty acid and sterol composition and their modulation towards the infection. T. cruzi infection downregulated the transcript levels of protein-coding genes for lipid biosynthetic and degrading pathways in individual triatomine organs. On the other hand, upregulation of lipid receptor transcripts indicates an attempt to capture more lipids from hemolymphatic lipoproteins. Consequently, several lipid classes (such as monoacylglycerol, diacylglycerol, triacylglycerol, cholesteryl ester, phosphatidylcholine, and phosphatidylethanolamine) were involved in the response to the parasite challenge, although modulating only the insect fat body. T. cruzi never leaves the insect gut and yet it modulates non-infected tissues, suggesting that the association between the parasite and the vector organs is reached by cell signaling molecules. This hypothesis raises several intriguing issues to inspire future studies in the parasite-vector interaction field.


2021 ◽  
pp. 102508
Author(s):  
Antonio Ortega-Pacheco ◽  
Anabel Poot-Ramos ◽  
Jose I. Chan-Pérez ◽  
Eduardo Gutiérrez-Blanco ◽  
Carlos M. Acevedo-Arcique ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (20) ◽  
pp. 10901
Author(s):  
Kate K. S. Batista ◽  
Cecília S. Vieira ◽  
Marcela B. Figueiredo ◽  
Samara G. Costa-Latgé ◽  
Patrícia Azambuja ◽  
...  

Chagas disease is a human infectious disease caused by Trypanosoma cruzi and can be transmitted by triatomine vectors, such as Rhodnius prolixus. One limiting factor for T. cruzi development is the composition of the bacterial gut microbiota in the triatomine. Herein, we analyzed the humoral immune responses of R. prolixus nymphs treated with antibiotics and subsequently recolonized with either Serratia marcescens or Rhodococcus rhodnii. The treatment with antibiotics reduced the bacterial load in the digestive tract, and the recolonization with each bacterium was successfully detected seven days after treatment. The antibiotic-treated insects, recolonized with S. marcescens, presented reduced antibacterial activity against Staphylococcus aureus and phenoloxidase activity in hemolymph, and lower nitric oxide synthase (NOS) and higher defensin C gene (DefC) gene expression in the fat body. These insects also presented a higher expression of DefC, lower prolixicin (Prol), and lower NOS levels in the anterior midgut. However, the antibiotic-treated insects recolonized with R. rhodnii had increased antibacterial activity against Escherichia coli and lower activity against S. aureus, higher phenoloxidase activity in hemolymph, and lower NOS expression in the fat body. In the anterior midgut, these insects presented higher NOS, defensin A (DefA) and DefC expression, and lower Prol expression. The R. prolixus immune modulation by these two bacteria was observed not only in the midgut, but also systemically in the fat body, and may be crucial for the development and transmission of the parasites Trypanosoma cruzi and Trypanosoma rangeli.


Parasitology ◽  
2021 ◽  
pp. 1-23
Author(s):  
Newmar Pinto Marliére ◽  
Marcelo Gustavo Lorenzo ◽  
Alessandra Aparecida Guarneri

2021 ◽  
Vol 15 (9) ◽  
pp. e0009760
Author(s):  
Priscila H. Vieira ◽  
Claudia F. Benjamim ◽  
Georgia Atella ◽  
Isabela Ramos

In insects the reserve proteins are stored in the oocytes into endocytic-originated vesicles named yolk organelles. VPS38/UVRAG and ATG14 are the variant regulatory subunits of two class-III ATG6/Beclin1 PI3K complexes that regulate the recruitment of the endocytic (complex II) and autophagic (complex I) machineries. In a previous work from our group, we found that the silencing of ATG6/Beclin1 resulted in the formation of yolk-deficient oocytes due to defects in the endocytosis of the yolk proteins. Because ATG6/Beclin1 is present in the two above-described PI3K complexes, we could not identify the contributions of each complex to the yolk defective phenotypes. To address this, here we investigated the role of the variant subunits VPS38/UVRAG (complex II, endocytosis) and ATG14 (complex I, autophagy) in the biogenesis of the yolk organelles in the insect vector of Chagas Disease Rhodnius prolixus. Interestingly, the silencing of both genes phenocopied the silencing of ATG6/Beclin1, generating 1) accumulation of yolk proteins in the hemolymph; 2) white, smaller, and yolk-deficient oocytes; 3) abnormal yolk organelles in the oocyte cortex; and 4) unviable F1 embryos. However, we found that the similar phenotypes were the result of a specific cross-silencing effect among the PI3K subunits where the silencing of VPS38/UVRAG and ATG6/Beclin1 resulted in the specific silencing of each other, whereas the silencing of ATG14 triggered the silencing of all three PI3K components. Because the silencing of VPS38/UVRAG and ATG6/Beclin1 reproduced the yolk-deficiency phenotypes without the cross silencing of ATG14, we concluded that the VPS38/UVRAG PI3K complex II was the major contributor to the previously observed phenotypes in silenced insects. Altogether, we found that class-III ATG6/Beclin1 PI3K complex II (VPS38/UVRAG) is essential for the yolk endocytosis and that the subunits of both complexes are under an unknown transcriptional regulatory system.


2021 ◽  
Author(s):  
Jose Manuel Latorre Estivalis ◽  
Ewald Grosse-Wilde ◽  
Gabriel R Fernandes ◽  
Bill S Hansson ◽  
Marcelo Gustavo Lorenzo

Background Triatomine bugs are the blood feeding insect vectors transmitting Chagas disease to humans, a neglected tropical disease that affects over 8 million people, mainly in Latin America. The behavioral responses to host cues and bug signals in Rhodnius prolixus are state dependent, i.e., they vary as a function of post-ecdysis age. At the molecular level, these changes in behavior are probably due to a modulation of peripheral and central processes. In the present study, we report a significant modulation of the expression of a large set of sensory-related genes. Results were generated by means of antennal transcriptomes of 5th instar larvae along the first week (days 0, 2, 4, 6 and 8) after ecdysis sequenced using the Illumina platform. Results Age induced significant changes in transcript abundance were established in more than 6,120 genes (54,7 % of 11,186 genes expressed) in the R. prolixus antenna. This was especially true between the first two days after ecdysis when more than 2,500 genes had their expression significantly altered. In contrast, expression profiles were almost identical between day 6 and 8, with only a few genes showing significant modulation of their expression. A total of 86 sensory receptors, odorant carriers and odorant degrading enzymes were significantly modulated across age points and clustered into three distinct expression profiles. Conclusions The set of sensory genes whose expression increased with age (profile 3) may include candidates underlying the increased responsiveness to host cues shown by R. prolixus during the first days after molting. For the first time, we describe the maturation process undergone at the molecular level by the peripheral sensory system is described in an hemimetabolous insect.


Sign in / Sign up

Export Citation Format

Share Document