Semi-quantitative FT-IR microanalysis limits: Evidence from synthetic hydrocarbon fluid inclusions in sylvite

1990 ◽  
Vol 54 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Pironon ◽  
O Barres
1990 ◽  
Vol 84 (1-4) ◽  
pp. 224-226 ◽  
Author(s):  
J. Pironon ◽  
O. Barres

2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


1990 ◽  
Vol 54 (375) ◽  
pp. 311-324 ◽  
Author(s):  
Nicole Guilhaumou ◽  
Nathalie Szydlowskii ◽  
Bernard Pradier

AbstractLiquid-hydrocarbon-bearing fluid inclusions have often been described associated with petroleum occurrences and diagenetic sediments. Infra-red microspectrometry allows characterization of fluid inclusions greater than 20 µm by establishing the presence of aliphatic and aromatic hydrocarbons as well as associated H2O, CO2 and CH4. Semi-quantitative analyses have been made by focussing on gaseous and liquid phases separately. Some CH2/CH3 and CO2/CH4 ratios have been determined by this method.Fluorescence microspectrometry permits precise measurements of the fluorescence emission spectrum of chromophore-bearing organic phases (essentially aromatic hydrocarbons) in fluid inclusions greater than 10 µm. Such a spectrum is a function of both the gross composition of the trapped oil and its thermal history.Both of these methods lead to the in situ characterization of hydrocarbon fluid inclusions. They are useful in providing a quantifiable distinction between different oil generations trapped during mineral growth in diagenetic and epigenetic minerals.


1987 ◽  
Vol 41 (6) ◽  
pp. 1000-1008 ◽  
Author(s):  
O. Barres ◽  
A. Burneau ◽  
J. Dubessy ◽  
M. Pagel

Infrared spectra of fluid inclusions are obtained with a Fourier transform infrared miscrospectrometer. The experimental conditions and the analytical use are discussed. Interferograms are recorded in the transmission mode. The quality of spectra is good for fluid inclusions with diameters larger than 30 μm, the spectral resolution being 4 cm−1 and the recording time 200 s. Interferograms made of inclusions with diameters of less than 20 μm are reached in the same amount of time, but with worse spectral resolution. Infrared spectra are usually only suitable above 2000 cm−1, because of the absorption of most of the inclusion-bearing host minerals, the thickness of which should never exceed 1 mm. This fact further limits their interpretation, as the inclusion composition is complex. However, complementary information can be obtained in the 4600–4000-cm−1 range for hydrocarbon inclusions with a thickness that is larger than some tens of micrometers. This shows that it is necessary to use a detector which is as sensitive as possible towards high frequencies. A comparison of the current performances of infrared and Raman spectroscopies as analytical methods for investigating fluid inclusions is presented. The important improvement of better spatial resolution and the corresponding possibility of being able to characterize heterogeneities, in comparison to limitations with classical dispersive infrared spectrometry, are discussed. Methane, carbon dioxide, liquid water, aromatic ester, and linear or branched alkanes are identified in several samples. It is also possible to estimate the mean ratio of alkane CH2/CH3 groups. In some cases, the intensity of the absorptions indicates the inclusion effective thickness and the mole fraction ratio.


Sign in / Sign up

Export Citation Format

Share Document