hydrocarbon fluid
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 0)

AAPG Bulletin ◽  
2021 ◽  
Vol 105 (10) ◽  
pp. 1973-1991
Author(s):  
Sijibomioluwa A. Badejo ◽  
Adrian R. Muxworthy ◽  
Alastair Fraser ◽  
Graham R. Stevenson ◽  
Xiang Zhao ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 53-58
Author(s):  
Juyeon Song ◽  
Myeung Hwan Choi ◽  
Jeongwoo An ◽  
Jaye Koo

LITOSFERA ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 289-305
Author(s):  
V. G. Kutcherov ◽  
K. S. Ivanov ◽  
A. Yu. Serovaiskii

Research subject. Experimental modelling of the transformation of complex hydrocarbon systems under extreme thermobaric conditions was carried out. The results obtained were compared with geological observations in the Urals, Kamchatka and other regions.Material and methods. The materials for the research were a model hydrocarbon system similar in composition to natural gas condensate and a system consisting of a mixture of saturated hydrocarbons and various iron-containing minerals enriched in 57Fe. Two types of high-pressure equipment were used: a diamond anvils cell and a Toroid-type high-pressure chamber. The experiments were carried out at pressures up to 8.8 GPa in the temperature range 593–1600 K.Results. According to the obtained results, hydrocarbon systems submerged in a subduction slab can maintain their stability down to a depth of 50 km. Upon further immersion, during contact of the hydrocarbon fluid with the surrounding iron-bearing minerals, iron hydrides and carbides are formed. When iron carbides react with water under the thermobaric conditions of the asthenosphere, a water-hydrocarbon fluid is formed. Geological observations, such as methane finds in olivines from ultramafic rocks unaffected by serpentinization, the presence of polycyclic aromatic and heavy saturated hydrocarbons in ophiolite allochthons and ultramafic rocks squeezed out from the paleo-subduction zone of the Urals, are in good agreement with the experimental data.Conclusion. The obtained experimental results and presented geological observations made it possible to propose a concept of deep hydrocarbon cycle. Upon the contact of hydrocarbon systems immersed in a subduction slab with iron-bearing minerals, iron hydrides and carbides are formed. Iron carbides carried in the asthenosphere by convective flows can react with hydrogen contained in the hydroxyl group of some minerals or with water present in the asthenosphere and form a water-hydrocarbon fluid. The mantle fluid can migrate along deep faults into the Earth’s crust and form multilayer oil and gas deposits in rocks of any lithological composition, genesis and age. In addition to iron carbide coming from the subduction slab, the asthenosphere contains other carbon donors. These donors can serve as a source of deep hydrocarbons, also participating in the deep hydrocarbon cycle, being an additional recharge of the total upward flow of a water-hydrocarbon fluid. The described deep hydrocarbon cycle appears to be part of a more general deep carbon cycle.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 163
Author(s):  
Aleksandr Serovaiskii ◽  
Vladimir Kutcherov

The existence of iron carbide in the upper mantle allows an assumption to be made about its possible involvement in the abyssal abiogenic synthesis of hydrocarbons as a carbon donor. Interacting with hydrogen donors of the mantle, iron carbide can form hydrocarbon fluid. In order to investigate the role of iron carbide in the abiogenic synthesis of hydrocarbons, the chemical reaction between cementite Fe3C and water was modeled under thermobaric conditions, corresponding to the upper mantle. A series of experiments were conducted using a high-pressure high-temperature Toroid-type large reactive volume unit with further analysis by means of gas chromatography. The results demonstrated the formation of hydrocarbon fluid in a wide range of thermobaric conditions (873–1223 K, 2.5–6.0 GPa) corresponding to the upper mantle. A strong correlation between the composition of the fluid and the pT conditions of the synthesis was illustrated in the investigation. The higher temperature of the synthesis resulted in the formation of a “poor” hydrocarbon mixture, primarily comprising methane, while a higher pressure yielded the opposite effect, converting iron carbide into a complex hydrocarbon system, containing normal and iso-alkanes up to C7 and benzene. This correlation explains the diversity of hydrocarbon systems produced experimentally, thus expanding the thermobaric range of the possible existence of complex hydrocarbon systems in the upper mantle. The results support the suggestion that the carbide—water reaction can be a source of both the carbon and hydrogen required for the abyssal abiogenic synthesis of hydrocarbons.


Author(s):  
A. I. Lakhova ◽  
◽  
S. M. Petrov ◽  
E. G. Moiseeva ◽  
V. S. Balitsky ◽  
...  

Nafta-Gaz ◽  
2020 ◽  
Vol 76 (11) ◽  
pp. 784-793
Author(s):  
Marcin Warnecki ◽  
◽  
Mirosław Wojnicki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita ◽  
...  

The most important aspect of laboratory analysis is undoubtedly to acquire data of the highest quality. The worldwide trend of drilling into deeper reservoirs characterised by the high temperature and high pressure (HTHP) conditions makes the newly discovered reservoirs challenging because of bearing fluids with an unprecedented diversity of phase behaviour and variability of phase parameters over time. Due to the high temperature of the deep horizons constituting the reservoir rock, many individual components of the reservoir fluids are located in a region close to their critical temperatures, i.e. gas condensate (retrograde condensation region) or volatile oil. In particular, gas condensate reservoirs are challenging to analyse. They are highly prone to the errors resulting from phase behaviour testing when using samples that are incompatible with the original reservoir in-situ fluid that saturates the reservoir rock pores. Taking the representative samples of reservoir fluid is an essential requirement to obtain reliable data that can characterise such phase-variable multicomponent reservoirs. The primary purpose of hydrocarbon fluid analysis in case of new discoveries is to determine the type of reservoir fluid system. It should also be borne in mind that without a sufficiently long production process from several intervals and/or several wells, it can be challenging to classify the fluid with confidence, especially at the initial analysis stage. The paper presents issues related to sampling of the reservoir fluid (such as crude oil and natural gas) for the physical property and phase behaviour analyses (PVT), usually accompanied by chemical analyses. The importance of representativeness of the samples in performing reliable tests that have a significant impact on the hydrocarbon production was discussed. The data obtained from the PVT laboratory are widely used in economic reports concerning local, regional or finally national hydrocarbon reserves. Other applications of the PVT data include coordination of reservoir exploitation methods related to a particular fluid composition, as well as input to design requirements for the surface facilities development, and selection of the suitable technology for hydrocarbon fluid treatment prior to introduction to the market. Various techniques of downhole sampling were mentioned and characterised with an explanation of their applicability. The criteria for selection of a proper method were also presented.


Sign in / Sign up

Export Citation Format

Share Document