PIT (Petroleum Inclusion Thermodynamic): a new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements

2000 ◽  
Vol 69-70 ◽  
pp. 701-704 ◽  
Author(s):  
R Thiéry ◽  
J Pironon ◽  
F Walgenwitz ◽  
F Montel
1990 ◽  
Vol 54 (375) ◽  
pp. 311-324 ◽  
Author(s):  
Nicole Guilhaumou ◽  
Nathalie Szydlowskii ◽  
Bernard Pradier

AbstractLiquid-hydrocarbon-bearing fluid inclusions have often been described associated with petroleum occurrences and diagenetic sediments. Infra-red microspectrometry allows characterization of fluid inclusions greater than 20 µm by establishing the presence of aliphatic and aromatic hydrocarbons as well as associated H2O, CO2 and CH4. Semi-quantitative analyses have been made by focussing on gaseous and liquid phases separately. Some CH2/CH3 and CO2/CH4 ratios have been determined by this method.Fluorescence microspectrometry permits precise measurements of the fluorescence emission spectrum of chromophore-bearing organic phases (essentially aromatic hydrocarbons) in fluid inclusions greater than 10 µm. Such a spectrum is a function of both the gross composition of the trapped oil and its thermal history.Both of these methods lead to the in situ characterization of hydrocarbon fluid inclusions. They are useful in providing a quantifiable distinction between different oil generations trapped during mineral growth in diagenetic and epigenetic minerals.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


Sign in / Sign up

Export Citation Format

Share Document