scholarly journals Mineralogical and Fluid Inclusions Study of Epithermal Type Veins Intruding the Volcanic Rocks of the Kornofolia Area, Evros, NE Greece.

2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.

2020 ◽  
Vol 57 (12) ◽  
pp. 1392-1410 ◽  
Author(s):  
Xi-Heng He ◽  
Xiao-Hua Deng ◽  
Leon Bagas ◽  
Jing Zhang ◽  
Chao Li ◽  
...  

The Xiaorequanzi Cu–Zn deposit is in the westernmost part of East Tianshan Terrane in northwestern China. The deposit is unique in the region being a volcanogenic massive sulphide (VMS) deposit located near a zone (or belt) containing giant late Paleozoic porphyry Cu deposits. Aiming to better understand the genesis of the mineral deposits in the terrane and their tectonic setting, we report our findings of detailed studies on fluid inclusion microthermometry, Re–Os dating of chalcopyrite from the massive ore, and U–Pb dating of zircons from the host volcanic rocks. There are two sulphide stages with early pyrite succeeded by chalcopyrite–sphalerite, which are hydrothermally overprinted and supergene enriched. The hydrothermal overprinting is characterised by quartz–sulphide veins crossed by carbonate-rich quartz veins. Quartz from the chalcopyrite–sphalerite stage is characterised by primary fluid inclusions containing H2O–NaCl(–CO2) and homogenise at 228–392 °C with a salinity of 2.2–13.3 wt.% NaCl equiv. Secondary fluid inclusions related to the hydrothermal overprinting homogenise at 170–205 °C with a salinity of 2.7–12.1 wt.% NaCl equiv. Fluid inclusions in the quartz–sulphide stage of the hydrothermal overprinting contain H2O–NaCl with homogenisation temperatures of 164–281 °C and salinities in ranging from 2.9 to 12.4 wt.% NaCl equiv. Fluid inclusion in the quartz–calcite stage contain H2O–NaCl with homogenisation temperatures of 122–204 °C with salinities of 1.4–12.4 wt.% NaCl equiv. These characteristics are like those of the secondary fluid inclusions in the VMS mineralisation. Combining these findings with H–O isotopic data from previous studies, we propose that the primary mineralising fluid is magmatic in origin. Tuff hosting the mineralisation yields a SHRIMP U–Pb zircon age of 352 ± 5 Ma, which is interpreted as the age of the tuff, and a porphyritic felsite dyke intruding the tuff yields a SHRIMP U–Pb zircon date of 345 ± 6 Ma, interpreted as the emplacement age of the dyke. Chalcopyrite from the main orebody at Xiaorequanzi yields a Re–Os isochron age of 336 ± 13 Ma with an initial 187Os/188Os ratio of 0.25 ± 0.55 (MSWD = 12). Given that the VMS deposit is a syngenetic deposit, we regard the upper ca. 349 Ma limit of the Re–Os date as the approximate age of the chalcopyrite. The three dates are the same within error, and the upper limit of the Re–Os date of ca. 349 is taken as the age of the volcanic, dyke, and mineralisation. The volcanic rocks around the Xiaorequanzi deposit have been previously classified as calc–alkaline to high-K calc–alkaline enriched in large-ion lithophile elements and depleted in high-field-strength elements, which are characteristics indicative of a forearc setting. It is suggested that VMS mineralisation formed in a forearc setting related to the north-directed subduction of the Palaeo-Kangguer or North Tianshan oceanic plates.


2020 ◽  
Vol 990 ◽  
pp. 144-148
Author(s):  
Suphada Srilai ◽  
Worapak Tanwongwal ◽  
Kobchai Onpecth ◽  
Thanapat Wongkitikun ◽  
Kollayut Panpiemrasda ◽  
...  

Zeolite X were successfully synthesized from bentonite from Lopburi province, in Thailand using the two-step of hydrothermal method under optimum condition without calcination. The first step of hydrothermal were obtained at 200 °C for 3 h to remove unreacted impurity minerals such as quartz and muscovite. The secondary step of hydrothermal were obtained at 90 °C for 120 h for synthesis of zeolite X. The characterization of zeolite X were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy (FT-IR), respectively. The crystal structure of product was determined as zeolite X by XRD. The morphology of SEM images for zeolite X is octahedral shape. FTIR spectra are in accordance with the other characterization results.


2012 ◽  
Vol 1374 ◽  
pp. 49-59 ◽  
Author(s):  
Y. Espinosa-Morales ◽  
J. Reyes ◽  
B. Hermosín ◽  
J. A. Azamar-Barrios

ABSTRACTNatural dyes have been extracted from both plants and animal to give color to textiles and handicrafts. This is the case of purple dye extracted from Justicia spicigera Schldt, an acanthaceae used as a color source since pre-Hispanic period in the Mayan area of Mexico and Central America. Spectroscopic (UV-Vis and FT-IR) and chromatographic (PY-GC/MS) techniques were employed in order to characterize some of their chemical properties. UV-VIS absorption spectra indicates a λmaxpeak at 581 nm, value associated to anthocyanins group under bathochromic effect. On the other hand, a structural characterization realized by FT-IR and Py-GC/MS indicated the presence of polar hydroxibenzoic acids and phenolic compounds which are characteristics of the molecular structure of anthocyanins.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 324 ◽  
Author(s):  
Panagiotis Voudouris ◽  
Vasilios Melfos ◽  
Constantinos Mavrogonatos ◽  
Alexandre Tarantola ◽  
Jens Gӧtze ◽  
...  

Epithermally altered volcanic rocks in Greece host amethyst-bearing veins in association with various silicates, carbonates, oxides and sulfides. Host rocks are Oligocene to Pleistocene calc-alkaline to shoshonitic lavas and pyroclastics of intermediate to acidic composition. The veins are integral parts of high to intermediate sulfidation epithermal mineralized centers in northern Greece (e.g., Kassiteres–Sapes, Kirki, Kornofolia/Soufli, Lesvos Island) and on Milos Island. Colloform–crustiform banding with alternations of amethyst, chalcedony and/or carbonates is a common characteristic of the studied amethyst-bearing veins. Hydrothermal alteration around the quartz veins includes sericitic, K-feldspar (adularia), propylitic and zeolitic types. Precipitation of amethyst took place from near-neutral to alkaline fluids, as indicated by the presence of various amounts of gangue adularia, calcite, zeolites, chlorite and smectite. Fluid inclusion data suggest that the studied amethyst was formed by hydrothermal fluids with relatively low temperatures (~200–250 °C) and low to moderate salinity (1–8 wt % NaCl equiv). A fluid cooling gradually from the external to the inner parts of the veins, possibly with subsequent boiling in an open system, is considered for the amethysts of Silver Hill in Sapes and Kassiteres. Amethysts from Kornofolia, Megala Therma, Kalogries and Chondro Vouno were formed by mixing of moderately saline hydrothermal fluids with low-salinity fluids at relatively lower temperatures indicating the presence of dilution processes and probably boiling in an open system. Stable isotope data point to mixing between magmatic and marine (and/or meteoric) waters and are consistent with the oxidizing conditions required for amethyst formation.


2001 ◽  
Vol 34 (3) ◽  
pp. 1015 ◽  
Author(s):  
Β. ΜΕΛΦΟΣ ◽  
Π. ΒΟΥΔΟΥΡΗΣ ◽  
Κ. ΑΡΙΚΑΣ ◽  
Μ. ΒΑΒΕΛΙΔΗΣ

The present study correlates both the mineralogy of the hydrothermal alteration and the mineral chemistry of molybdenites from three porphyry Mo ± Cu occurrences in Thrace: Melitena, Pagoni Rachi/Kirki and Ktismata/ Maronia. The mineralisations are genetically related to calcalkaline, subvolcanic bodies of Tertiary age. According to their mineralogical and chemical composition the host rocks are characterized as dacite (Melitena), dacitic andésite (Pagoni Rachi) and porphyry microgranite (Ktismata/Maronia). The molybdenites occur in disseminated form, as fracture fillings, as well within quartz stockworks crosscuting the central alteration zones of the intrusives. They are accompanied by the following mineral assemblages: quartz, sericite, pyrophyllite, diaspore, Ca-Ba-rich alunite, pyrite (Melitena); quartz, albite/K-feldspar, biotite, actinolite, magnetite (Pagoni Rachi); and sericite, kaolinite, pyrophyllite, chlorite (Ktismata). Preliminary microthermometric results showed homogenisation temperatures from 352° to 390 °C for Pagoni Rachi area and from 295° to 363 °C for Melitena area. The salinities range between 4.5 and 6.1 wt% eq. NaCl and between 2.7 and 3.4 wt% eq. NaCl, respectively. Detailed study on over 400 fluid inclusions from the porphyry Cu-Mo deposit in Maronia area revealed formation temperatures from 300° to 420 °C, whereas salinities are distincted in two different groups from 6 to 16 wt% eq. NaCl and from 28 to 55 wt% eq. NaCl. The chemical composition of the molybdenites from the three porphyry Mo±Cu deposits in Thrace was studied with 155 microprobe analyses. The results revealed unusual high and variable Re concentrations in the studied molybdenites. Re content in molybdenite from Melitena area vary from 0.21 to 1.74 wt%, 0.79 wt% on average. The highest values were measured in samples from Pagoni Rachi (0.45-4.21 wt%, 1.98 wt% on average). Finally, microprobe analyses from molybdenite in Ktismata/Maronia showed Re content between 0.12 and 2.88 wt% (0.76 wt% on average). Rhenium is a very rare element with many definite uses, and is mainly associated with molybdenite in porphyry type deposits. According to the data published so far the Re content in molybdenite reaches up to 0.42 wt%. It is obvious therefore that such high Re concentrations (0.12 to 4.22 wt%) from the studied molybdenites in Thrace, are very ineresting for a possible future exploitation.


2013 ◽  
Vol 47 (1) ◽  
pp. 477 ◽  
Author(s):  
P. Voudouris ◽  
I. Psimis ◽  
C. Mavrogonatos ◽  
C. Kanellopoulos ◽  
M. Kati ◽  
...  

Epithermal-altered volcanic rocks in Greece host gem-quality amethyst veins in association with various silicates, carbonates, oxides, sulfides and halides. Host rocks are Oligocene to recent calc-alkaline to shoshonitic lavas and pyroclastics of intermediate- to acid composition. The amethyst-bearing veins occur in the periphery of porphyry-type and/or high-sulfidation epithermal mineralized centers in northern Greece (e.g. Sapes, Kirki, Kornofolia/Soufli, Lesvos island) and on Milos island in the active Aegean Volcanic Arc. Hydrothermal alteration around the quartz veins includes sericitic, K-feldspar (adularia), argillic, propylitic and zeolitic types. Precipitation of amethyst in the northern Greece occurrences, took place during the final stages of the magmatic-hydrothermal activity from near-neutral to alkaline fluids, as indicated by the presence of gangue adularia, calcite, smectite, chlorite, sericite, pyrite, zeolites (laumontite, heulandite, clinoptilolite), analcime and minor amounts of barite, halite, epidote and fluorite in the quartz veins. Amethyst at Milos Island (Chondro Vouno and Kalogries-Vani areas), is accompanied by barite, smectite and lepidocrocite. Colloform-crustiform banding with alternations of amethyst, chalcedony and/or carbonates is a common characteristic of the studied amethyst-bearing veins. Fluid inclusion- and mineralogical data suggest that the studied amethyst were formed at: 174-246 °C (Sapes area), 100-175 °C (Kirki and Kornofolia areas) and 223-234°C (Lesvos island). The amethyst formation requires oxidizing conditions and is probably the result of mixing between meteoric or seawater with upwelling hydrothermal fluids. The involvement of seawater in the studied mineralization is supported by the presence of halite and abundant barite in the veins. Finally, the studied amethyst deposits should be evaluated as potential gemstone sources in Greece.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 719-726
Author(s):  
Sayyed Roshan ◽  
Ali Khan Nasr Esfahani

The study area is located in south and southeast of Beroni Village. It contains volcanic rocks including andesitic-basaltic, pyroxene-bearing andesite, andesite, dacite, rhyodacite, rhyolites and Eocene-Oligocene ignimbrites. The volcanic rocks are cut by an intrusive mass with great spreading in the region. According to lithological studies, the calc-alkaline magmas in continental margin arcs are comprised of mantle and fluid crust. The basic elements in the volcanic rocks were studied in terms of petrological indices. According to the results, the metaluminous rocks underwent crustal contamination. Due to chemical reactions between the hydrothermal solution and volcanic host rocks, hydrothermal solutions in volcanic rocks penetrate the surrounding silica rocks and thus some elements such as zinc and barium diffuse in the rocks. In addition, calcium, magnesium and iron have been drawn inwards from the surrounding rocks causing lateral segregation.


1999 ◽  
Vol 55 (6) ◽  
pp. 947-952 ◽  
Author(s):  
J. J. Criado ◽  
A. Jiménez-Sánchez ◽  
F. H. Cano ◽  
R. Sáez-Puche ◽  
E. Rodríguez-Fernández

Tetrachlorocobaltates(II) of diprotonated α,ω-diaminoalkanes with the formula [NH3(CH2) n NH3]CoCl4, where n = 5 (cadaverine; 1,5-pentanediammonium tetrachlorocobaltate), 8 (1,8-octanediammonium tetrachlorocobaltate) and 10 (1,10-decanediammonium tetrachlorocobaltate), were prepared. The compounds were studied by mass spectrometry, FT-IR and visible spectroscopy, magnetic susceptibility techniques and thermal analysis. The compounds contain the tetrahedral tetrachlorocobaltate(II) ion and the corresponding diprotonated diamine (cadaverine, 1,8-octamethylenediamine and 1,10-decamethylenediamine). The compound corresponding to cadaverine crystallizes in the monoclinic space group P21/c, with lattice parameters a = 7.1633 (7), b = 15.940 (3), c = 11.137 (2) Å, β = 98.44 (1)° and Z = 4. Its crystal structure contains slightly distorted tetrahedral CoCl_4^{2-} ions: the largest difference in Co—Cl bond lengths is 0.029 Å and the largest difference in Cl—Co—Cl angles is 7.76°. The compound also contains diprotonated cadaverine ions. An extensive hydrogen-bonding network connects these ions. The slightly positive deviations of the magnetic susceptibility from the Curie–Weiss law are in agreement with the 4 A 2 ground state for the tetrachlorocobaltate anion. The compounds with eight and ten C atoms show phase transitions in the solid state and a greater complexity is observed in their differential scanning calorimetry curves. Unfortunately, no suitable single crystals of these could be obtained.


Geologos ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Amir Haji Babaei ◽  
Alireza Ganji

Abstract The Ahmadabad hematite/barite deposit is located to the northeast of the city of Semnan, Iran. Geostructurally, this deposit lies between the Alborz and the Central Iran zones in the Semnan Subzone. Hematite-barite mineralisation occurs in the form of a vein along a local fault within Eocene volcanic host rocks. The Ahmadabad deposit has a simple mineralogy, of which hematite and barite are the main constituents, followed by pyrite and Fe-oxyhydroxides such as limonite and goethite. Based on textural relationships between the above-mentioned principal minerals, it could be deduced that there are three hydrothermal mineralisation stages in which pyrite, hematite and barite with primary open space filling textures formed under different hydrothermal conditions. Subsequently, in the supergene stage, goethite and limonite minerals with secondary replacement textures formed under oxidation surficial conditions. Microthermometric studies on barite samples show that homogenisation temperatures (TH) for primary fluid inclusions range from 142 to 256°C with a temperature peak between 200 and 220°C. Salinities vary from 3.62 to 16.70 NaCl wt% with two different peaks, including one of 6 to 8 NaCl wt% and another of 12 to 14 NaCl wt%. This indicates that two different hydrothermal waters, including basinal and sea waters, could have been involved in barite mineralisation. The geochemistry of the major and trace elements in the samples studied indicate a hydrothermal origin for hematite and barite mineralisation. Moreover, the Fe/Mn ratio (>10) and plots of hematite samples of Ahmadabad ores on Al-Fe-Mn, Fe-Mn-(Ni+Co+ Cu)×10, Fe-Mn-SiX2 and MnO/TiO2 – Fe2O3/TiO2 diagrams indicate that hematite mineralisation in the Ahmadabad deposit occurred under hydrothermal conditions. Furthermore, Ba and Sr enrichment, along with Pb, Zn, Hg, Cu and Sb depletion, in the barite samples of Ahmadabad ores are indicative of a low temperature hydrothermal origin for the deposit. A comparison of the ratios of LaN/YbN, CeN/YbN, TbN/LaN, SmN/NdN and parameters of Ce/Ce* and La/La* anomalies of the hematite, barite, host volcanic rocks and quartz latite samples to each other elucidate two important points: 1) the barite could have originated from volcanic host rocks, 2) the hematite could have originated from a quartz latite lithological unit. The chondrite normalised REE patterns of samples of hematite barite, volcanic host rocks and quartz latite imply that two different hydrothermal fluids could be proposed for hematite and barite mineralisation. The comparison between chondrite normalised REE patterns of Ahmadabad barite with oceanic origin barite and low temperature hydrothermal barite shows close similarities to the low temperature hydrothermal barite deposits.


2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
David Garófano-Medina ◽  
Mercedes Fuertes-Fuente ◽  
Antonia Cepedal ◽  
Agustín Martin-Izard

The San Finx W–Sn ore deposit is located in the Spanish province of A Coruña (Galicia, NW Spain). Geologically, it occurs in the Galicia-Trás-os-Montes zone which is one of the innermost zones of the Iberian Variscan collisional belt. This ore deposit is characterized by NE–SW trending quartz-dominated veins with centimeter-size hübnerite and cassiterite. This research focuses on one sector of this deposit known as Buenaventura. The aim of this work is to present a mineralogical and petrological characterization of the ore-bearing veins, their host rocks and associated hydrothermal alteration. The vein mineralogy is mainly quartz, muscovite, K-feldspar, apatite and scarce fluorite. The ore minerals are hübnerite, scheelite and cassiterite with columbite and ilmenorutile-struverite inclusions, together with sulfides, mainly chalcopyrite and arsenopyrite, and, in less abundance, molybdenite, löllingite, pyrrhotite, sphalerite, stannite, pyrite, Bi-Pb-Ag sulfosalts and native bismuth. The main host-rocks are micaschist and paragneiss and two types of pegmatites, homogeneous pegmatites and banded aplite-pegmatites with columbite. The host rocks are affected by four types of hydrothermal alterations: tourmalinization, greissenization, feldspathization and silicification. The more widespread alteration is the feldspathization in which the protolith is replaced by massive albite and K-feldspar with fibrous habit, accompanied by apatite, chlorite, rutile, magnetite, hematite, chalcopyrite and sphalerite. In addition, there are highly deformed areas with a complex alteration rich in K-feldspar and sulfides, mainly chalcopyrite, minerals of the stannite group and sphalerite and, in less abundance, bismuthinite, native bismuth, galena and pyrite. This deposit shares features in terms of geological setting, hydrothermal alteration and ore assemblages with exogreisen systems formed in the cupolas of highly fractionated granites in collisional settings.


Sign in / Sign up

Export Citation Format

Share Document