Blood substitutes; preparation, physiology and medical applications

1990 ◽  
Vol 22 (5) ◽  
pp. 551
2008 ◽  
Vol 44 ◽  
pp. 63-84 ◽  
Author(s):  
Chris E. Cooper

Optimum performance in aerobic sports performance requires an efficient delivery to, and consumption of, oxygen by the exercising muscle. It is probable that maximal oxygen uptake in the athlete is multifactorial, being shared between cardiac output, blood oxygen content, muscle blood flow, oxygen diffusion from the blood to the cell and mitochondrial content. Of these, raising the blood oxygen content by raising the haematocrit is the simplest acute method to increase oxygen delivery and improve sport performance. Legal means of raising haematocrit include altitude training and hypoxic tents. Illegal means include blood doping and the administration of EPO (erythropoietin). The ability to make EPO by genetic means has resulted in an increase in its availability and use, although it is probable that recent testing methods may have had some impact. Less widely used illegal methods include the use of artificial blood oxygen carriers (the so-called ‘blood substitutes’). In principle these molecules could enhance aerobic sports performance; however, they would be readily detectable in urine and blood tests. An alternative to increasing the blood oxygen content is to increase the amount of oxygen that haemoglobin can deliver. It is possible to do this by using compounds that right-shift the haemoglobin dissociation curve (e.g. RSR13). There is a compromise between improving oxygen delivery at the muscle and losing oxygen uptake at the lung and it is unclear whether these reagents would enhance the performance of elite athletes. However, given the proven success of blood doping and EPO, attempts to manipulate these pathways are likely to lead to an ongoing battle between the athlete and the drug testers.


1976 ◽  
Vol 15 (02) ◽  
pp. 69-74
Author(s):  
M. Goldberg ◽  
B. Doyon

This paper describes a general data base management package, devoted to medical applications. SARI is a user-oriented system, able to take into account applications very different by their nature, structure, size, operating procedures and general objectives, without any specific programming. It can be used in conversational mode by users with no previous knowledge of computers, such as physicians or medical clerks.As medical data are often personal data, the privacy problem is emphasized and a satisfactory solution implemented in SARI.The basic principles of the data base and program organization are described ; specific efforts have been made in order to increase compactness and to make maintenance easy.Several medical applications are now operational with SARI. The next steps will mainly consist in the implementation of highly sophisticated functions.


Sign in / Sign up

Export Citation Format

Share Document