Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section

1996 ◽  
Vol 31 (1) ◽  
pp. 1-20 ◽  
Author(s):  
A.M. Robertson ◽  
S.J. Muller
Author(s):  
Sebastian Muntean ◽  
Alin Ilie Bosioc ◽  
Ionel Aurel Drăghici ◽  
Liviu Eugen Anton

Abstract The pump inlet casing deflects the fluid flow from the inlet pipe, mainly arranged normally to the axis, into the axial direction. The pump inlet casing can take a large variety of geometrical shapes from curved pipes to three-dimensional elbows. The hydrodynamic field induced by symmetrical suction elbow (SSE) at the pump inlet is experimentally investigated in order to quantify it effects at the pump inlet. The pump test rig and the experimental setup are detailed. A SSE model is installed at the pump inlet. Laser Doppler Velocimetry (LDV) measurements are performed on the annular cross section located at the pump inlet. As a result, the map of the velocity field is determined quantifying the non-uniformities induced by SSE. Next, the full 3D turbulent numerical investigation of the flow in the SSE is performed. The numerical results on the annular cross section are qualitatively and quantitatively validated against LDV data. A good agreement between numerical results and experimental data is obtained. The hydrodynamic flow structure with several pairs of vortices is identified examining the vorticity field. However, two pairs of vortices with largest contribution to the flow non-uniformity are examined. Three parameters are considered to quantify the evolution of each vortex center: two geometrical quantities (e.g. the radial and angular coordinates) and one hydrodynamic (the magnitude of vorticity). The largest values of the vorticity magnitude are identified in the center of both vortices located behind the shaft. The 3D distribution of the vortex core filaments is visualized. As a result, the 3D geometry of the SSE and the pump shaft are identified as the main sources of the flow non-uniformity at the pump inlet. This deep analysis of the 3D flow field induced by the SSE paves the way towards an improved geometry with practical applications to real pump and pump-turbines.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
A. V. Kale ◽  
H. T. Thorat

Straight pipes with a circular cross section are processed into smooth bends by various pipe bending techniques. After bending, the initial circular cross section is deformed with thickness change. These changes from ideal are normally referred to as “ovality” and “thinning.” Their influence on the subsequent behavior of curved pipes is not yet fully understood. The aim of this paper is to present a factual method to reduce thinning of the wall thickness of pipe during bending. A new mechanism is developed for bending of pipes. This mechanism has a provision of precompression (radial squeeze) of the pipe along the directrix of maximum deformation during bending. This is achieved by clamping the pipe using two parallel plates from top and bottom. In fact, the pipe is wrapped using two rollers—one from inside and one from outside in the horizontal plane—and two plates parallel to the horizontal plane—one from the top and one from the bottom. Experimentation is carried out on this mechanism, and thicknesses are measured at the grid points along the length of the pipe. From the experimental values of thicknesses on the tension and compression sides, dimensionless variations in wall thickness of various groups of pipes are computed for different precompression values. In order to represent the thickness at any point, a mathematical equation is derived. Analytical values of thickness variations on tension and compression sides are computed using this equation. Experimental and analytical results are compared, and its methodical approach is presented in this paper. Results show that precompression reduces thickness variation of the pipe after bending.


2003 ◽  
Vol 70 (2) ◽  
pp. 253-259 ◽  
Author(s):  
V. P. Cherniy

A general solution is presented for the in-plane bending of short-radius curved pipes (pipe bends) which have variable wall thickness. Using the elastic thin-shell theory, the actual radius of curvature of the pipe’s longitudinal fibers and displacement of the neutral line of the cross section under bending are taken into account. The pipe’s wall thickness is assumed to vary smoothly along the contour of the pipe’s cross section, and is a function of an angular coordinate. The solution uses the minimization of the total energy, and is compared to our previous solution for curved pipes with constant wall thickness.


Sign in / Sign up

Export Citation Format

Share Document