On the stability of periodic solutions of non-self-contained quasi-linear systems with two degrees of freedom

1965 ◽  
Vol 29 (6) ◽  
pp. 1273-1281
Author(s):  
G.V. Plotnikova
Author(s):  
Ruigui Pan ◽  
Huw G. Davies

Abstract Nonstationary response of a two-degrees-of-freedom system with quadratic coupling under a time varying modulated amplitude sinusoidal excitation is studied. The nonlinearly coupled pitch and roll ship model is based on Nayfeh, Mook and Marshall’s work for the case of stationary excitation. The ship model has a 2:1 internal resonance and is excited near the resonance of the pitch mode. The modulated excitation (F0 + F1 cos ωt) cosQt is used to model a narrow band sea-wave excitation. The response demonstrates a variety of bifurcations, loss of stability, and chaos phenomena that are not present in the stationary case. We consider here the periodically modulated response. Chaotic response of the system is discussed in a separate paper. Several approximate solutions, under both small and large modulating amplitudes F1, are obtained and compared with the exact one. The stability of an exact solution with one mode having zero amplitude is studied. Loss of stability in this case involves either a rapid transition from one of two stable (in the stationary sense) branches to another, or a period doubling bifurcation. From Floquet theory, various stability boundary diagrams are obtained in F1 and F0 parameter space which can be used to predict the various transition phenomena and the period-2 bifurcations. The study shows that both the modulation parameters F1 and ω (the modulating frequency) have great effect on the stability boundaries. Because of the modulation, the stable area is greatly expanded, and the stationary bifurcation point can be exceeded without loss of stability. Decreasing ω can make the stability boundary very complicated. For very small ω the response can make periodic transitions between the two (pseudo) stable solutions.


1973 ◽  
Vol 187 (1) ◽  
pp. 787-794
Author(s):  
J. R. Ellis

Two degrees of freedom models of a car are employed to demonstrate the effects of the suspension derivative ∂ x/∂ z on the pitch and bounce attitudes during braking or accelerating. The work equation is employed to show that brake effort distribution between the axles has a significant effect on the attitudes when anti-dive suspension characteristics are utilized. The steady-state positions in both pitch and bounce are developed for linear systems of typical suspensions that may be either standard or coupled systems. Non-linear systems are considered using simulation techniques. A description of some simulation circuits is contained in an appendix.


2005 ◽  
Vol 47 (2) ◽  
pp. 249-263
Author(s):  
Zhengqiu Zhang ◽  
Yusen Zhu ◽  
Biwen Li

AbstractWe study a nonlinear oscillatory system with two degrees of freedom. By using the continuation theorem of coincidence degree theory, some sufficient conditions are obtained to establish the existence of periodic solutions of the system.


1992 ◽  
Vol 59 (1) ◽  
pp. 140-145 ◽  
Author(s):  
P. Yu ◽  
A. H. Shah ◽  
N. Popplewell

This paper is concerned with the galloping of iced conductors modeled as a two-degrees-of-freedom system. It is assumed that a realistic cross-section of a conductor has eccentricity; that is, its center of mass and elastic axis do not coincide. Bifurcation theory leads to explicit asymptotic solutions not only for the periodic solutions but also for the nonresonant, quasi-periodic motions. Critical boundaries, where bifurcations occur, are described explicitly for the first time. It is shown that an interesting mixed-mode phenomenon, which cannot happen in cocentric cases, may exist even for nonresonance.


Sign in / Sign up

Export Citation Format

Share Document