Changes in length of human rectus femoris muscle fibers as a function of changes in knee joint angle

1989 ◽  
Vol 22 (10) ◽  
pp. 1022
Author(s):  
Walter Herzog ◽  
Sheila K. Abrahamse
2008 ◽  
Vol 43 (5) ◽  
pp. 470-476 ◽  
Author(s):  
Jason D. Peeler ◽  
Judy E. Anderson

Abstract Context: The modified Thomas test is commonly used in the clinical setting to assess flexibility about the thigh region. Objective: To evaluate the clinical reliability of the modified Thomas test for evaluating the flexibility of the rectus femoris muscle about the knee joint. Design: Descriptive laboratory study using a test-retest design. Setting: Institution-based clinical orthopaedic setting. Patients Or Other Participants: Fifty-seven individuals between the ages of 18 and 45 years with no history of trauma participated. Of those, 54 completed the study. Intervention(s): Three Board-certified athletic therapists with an average of 12.67 years of sport medicine expertise assessed rectus femoris flexibility using pass/fail and goniometer scoring systems. A retest session was completed 7 to 10 days later. Main Outcome Measure(s): Parametric and nonparametric tests were used to compare participants' test-retest results. Results: Chance-corrected κ values (intrarater x¯  =  0.40, 95% confidence interval [CI]  =  0.30, 0.54; interrater x¯  =  0.33, 95% CI  =  0.23, 0.41) indicated generally poor levels of reliability for pass/fail scoring. Intraclass correlation coefficient (ICC) values (intrarater x¯  =  0.67, 95% CI  =  0.55, 0.76; interrater x¯  =  0.50, 95% CI  =  0.40, 0.60) indicated fair to moderate levels of reliability for goniometer data. Measurement error values (standard error of measurement  =  7°, method error  =  6°, and coefficient of variation  =  13%) and Bland-Altman plots (with 95% limits of agreement) further demonstrated the degree of intrarater variance for each examiner when conducting the test. Conclusions: These results call into question the statistical reliability of the modified Thomas test and provide clinicians with important information regarding its reliability limits when used to clinically assess flexibility of the rectus femoris muscle about the knee joint in a physically active population. More research is needed to ascertain the variables that may confound the statistical reliability of this orthopaedic technique.


2018 ◽  
Vol 72 ◽  
pp. 95-100
Author(s):  
Michał Szlęzak ◽  
Wirginia Likus ◽  
Bartłomiej Matuszny ◽  
Maciej Krupa ◽  
Krzysztof Ficek

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 507-508
Author(s):  
Hiroku Mitsuya ◽  
Koichi Nakazato ◽  
Kohei Watanabe ◽  
Takashi Okada

2021 ◽  
Author(s):  
Davide Sometti ◽  
Lorenzo Semeia ◽  
Hui Chen ◽  
Juergen Dax ◽  
Cornelius Kronlage ◽  
...  

Muscle fatigue is well characterized electromyographically, nevertheless only information about summed potential differences is detectable. In contrast, recently developed quantum sensors optically pumped magnetometers (OPMs) offer the advantage of recording both the electrical current propagation in the muscle as well as its geometry, by measuring the magnetic field generated by the muscular action potentials. Magnetomyographic investigation of muscle fatigue is still lacking and it is an open question whether fatigue is characterized similarly in magnetomyography (MMG) compared to electromyography (EMG). Herein, we investigated the muscle fatigue during a 3x1-min strong isometric contraction of the rectus femoris muscle of 12 healthy subjects using simultaneous EMG-MMG (4-channel surface EMG and 4 OPM along the rectus femoris muscle). Both EMG and MMG showed the characteristic frequency decrease in the signal magnitude during isometric contraction, which is typical for muscle fatigue. In addition, it was shown that the main part of this frequency decrease seems to occur in the circular component of the magnetic field around the muscle fibers and less longitudinally along the muscle fibers. Overall, these results show not only that magnetomyography is capable of reproducing the electromyographic standards in identifying muscular fatigue, but it also adds relevant information about the spatial characterization of the signal. Therefore, OPM-MMG offers new insights for the study of muscular activity and might serve as a new, supplementary neurophysiological method.


2014 ◽  
Vol 50 (5) ◽  
pp. 794-802 ◽  
Author(s):  
Kohei Watanabe ◽  
Motoki Kouzaki ◽  
Toshio Moritani

Sign in / Sign up

Export Citation Format

Share Document