High-performance liquid chromatographic analysis of chlorhexidine and p-chloroaniline using a specialty column and a photodiode-array detector

1992 ◽  
Vol 623 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Walter K. Gavlick
Author(s):  
RAMA KUMAR KANDULA ◽  
RAJA SUNDARARAJAN

Objective: The objective of the study was to develope a stability indicating high-performance liquid chromatographic (HPLC) method for simultaneous assay of pentazocine and naloxone in bulk and tablets. Methods: Pentazocine and naloxone were analyzed on Dionex C18 column using 0.1M K2HPO4 buffer (pH 4.0) and methanol (60:40, v/v) as the mobile phase. The concentration of pentazocine and naloxone was quantified by photodiode array detector set at 248 nm. The method was validated in compliance with ICH rules. Pentazocine and naloxone tablet formulation was subjected to forced degradation such as acid, neutral and alkali hydrolysis, oxidation, photo, and thermal degradation. Results: The method was linear, with R2=0.9999 in the concentration range 100–300 μg/ml for pentazocine and R2=0.9995 in the concentration range 1–3 μg/ml for naloxone. The level of detection and quantification was 0.097 μg/ml and 0.322 μg/ml for pentazocine and 0.0073 μg/ml and 0.0243 μg/ml for naloxone, respectively. The degraded products are resolved well from pentazocine and naloxone with significantly different retention time values. From validation results, it was proved that the method is selective, precise, robust, and accurate for the estimation of pentazocine and naloxone simultaneously. Conclusion: The developed stability-indicating HPLC method can be applied for quantitative determination of pentazocine and naloxone in tablets.


Author(s):  
Saniye Özcan ◽  
Serkan Levent ◽  
Nafiz Öncü Can

: The alkyl esters of p-hydroxybenzoic acid at the C-4 position, “the parabens,” including methyl, ethyl, propyl, and butyl, are widely used as antimicrobial preservatives in foods, cosmetics, and pharmaceuticals. Official regulations on the use of these compounds make their analysis essential for the estimation of their exposure. On this basis, the presented study was realized to develop a simple, selective and cheap high-performance liquid chromatographic method for the quantitative determination of methyl paraben (MP), ethyl paraben (EP), n-propyl paraben (NPP), isopropyl paraben (IPP), n-butyl paraben (NBP), isobutyl paraben (IBP) and benzyl paraben (BP) in pharmaceuticals and cosmetic products. The chromatographic separation of the analytes was achieved under flow rate gradient elution conditions using a C18-bonded core-shell silica particle column (2.6 μm particle size, 150 × 3.0 mm from Phenomenex Co.). The samples were injected into the system as aliquots of 1.0 μL, and the compounds were detected by using a photodiode array detector set at 254 nm wavelength. With this technique, seven paraben derivatives can be determined in the concentration range of 250-2000 ng/mL. The recovery of the method is in the range of 99.95-13.84%, and the RSD is at a maximum value of 3.95%. The proposed method was fully validated and successfully applied to different pharmaceutical and cosmetic samples (n=16), including syrups, suspensions, oral sprays, gels, etc. At least one paraben derivative was detected in six of the samples, and was determined quantitatively. The maximum amount of a paraben derivative found in the analyzed samples is 321.7 ng/mL, which was MP. To the best of our knowledge, this is the first LC method, which is applicable both on pharmaceutical and cosmetic samples.


Sign in / Sign up

Export Citation Format

Share Document