Quasielastic light-scattering studies of micellar sodium dodecyl sulfate solutions at the low concentration limit

1979 ◽  
Vol 70 (3) ◽  
pp. 494-505 ◽  
Author(s):  
Axel Rohde ◽  
Erich Sackmann
2020 ◽  
pp. 039139882097542
Author(s):  
Jin Cheng ◽  
Ji Li ◽  
Zhiwen Cai ◽  
Yuehao Xing ◽  
Cong Wang ◽  
...  

Background: The decellularized scaffold is a promising material for producing tissue-engineered vascular grafts (TEVGs) because of its complex, native-like three-dimensional structure and mechanical properties. Sodium dodecyl sulfate (SDS), one of the most commonly used decellularization reagents, appears to be more effective than other detergents for removing cells from dense tissues. The concentrations of SDS used in previous studies and their effects on decellularization are not consistent. Methods: In this study, porcine carotid arteries were decellularized using detergent-based protocols using Triton X-100 followed by SDS at different concentrations and exposing time. Cell removal efficiency and composition were evaluated by histological analysis, and DNA and collagen quantification. Ultrastructure, mechanical properties, pore size distribution, and in vivo biocompatibility of decellularized arteries were also evaluated. Results: The DNA content of decellularized scaffolds treated with 0.3% SDS for 72 h or 0.5% SDS for 48 h was significantly less than that treated with 1% SDS for 30 h. There was a significant loss of soluble collagen after treatment with 1% SDS relative to native arteries. The extensive loss of elastin and glycosaminoglycans was observed in decellularized arteries treated with 0.5% SDS or 1% SDS. The basement membrane and biomechanics were also damaged by these two protocols. Moreover, decellularized scaffolds became more porous with many large pores after treatment with 0.3% SDS. Conclusion: Low-concentration SDS could be a suitable choice for artery decellularization. Decellularized porcine carotid arteries, prepared using Triton X-100 followed by 0.3% SDS, may be a promising biological scaffold for TEVGs.


Langmuir ◽  
1999 ◽  
Vol 15 (11) ◽  
pp. 3748-3751 ◽  
Author(s):  
Simon M. Bystryak ◽  
Mitchell A. Winnik ◽  
Junaid Siddiqui

2013 ◽  
Vol 111 ◽  
pp. 561-570 ◽  
Author(s):  
José Wilson P. Carvalho ◽  
Fernanda Rosa Alves ◽  
Tatiana Batista ◽  
Francisco Adriano O. Carvalho ◽  
Patrícia S. Santiago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document