Finite-difference methods for calculating steady incompressible flows in three dimensions

1979 ◽  
Vol 33 (3) ◽  
pp. 325-339 ◽  
Author(s):  
S.C.R. Dennis ◽  
D.B. Ingham ◽  
R.N. Cook
2011 ◽  
Vol 1 (2) ◽  
pp. 155-171 ◽  
Author(s):  
Zhilin Li ◽  
Ming-Chih Lai

AbstractIn this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena.


Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 844-849 ◽  
Author(s):  
M. Ali Riahi ◽  
Christopher Juhlin

Finite‐difference methods have generally been used to solve dynamic wave propagation problems over the last 25 years (Alterman and Karal, 1968; Boore, 1972; Kelly et al., 1976; and Levander, 1988). Recently, finite‐difference methods have been applied to the eikonal equation to calculate the kinematic solution to the wave equation (Vidale, 1988 and 1990; Podvin and Lecomte, 1991; Van Trier and Symes, 1991; Qin et al., 1992). The calculation of the first‐arrival times using this method has proven to be considerably faster than using classical ray tracing, and problems such as shadow zones, multipathing, and barrier penetration are easily handled. Podvin and Lecomte (1991) and Matsuoka and Ezaka (1992) extended and expanded upon Vidale’s (1988) algorithm to calculate traveltimes for reflected waves in two dimensions. Based on finite‐difference calculations for first‐arrival times, Hole et al. (1992) devised a scheme for inverting synthetic and real data to estimate the depth to refractors in the crust in three dimensions. The method of Hole et al. (1992) for inversion is computationally efficient since it avoids the matrix inversion of many of the published schemes for refraction and reflection traveltime data (Gjøystdal and Ursin, 1981).


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 206
Author(s):  
María Consuelo Casabán ◽  
Rafael Company ◽  
Lucas Jódar

This paper deals with the search for reliable efficient finite difference methods for the numerical solution of random heterogeneous diffusion reaction models with a finite degree of randomness. Efficiency appeals to the computational challenge in the random framework that requires not only the approximating stochastic process solution but also its expectation and variance. After studying positivity and conditional random mean square stability, the computation of the expectation and variance of the approximating stochastic process is not performed directly but through using a set of sampling finite difference schemes coming out by taking realizations of the random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic expressions collapsing the approach is avoided keeping reliability. Results are simulated and a procedure for the numerical computation is given.


Sign in / Sign up

Export Citation Format

Share Document