scholarly journals Bose–Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods

2003 ◽  
Vol 36 (12) ◽  
pp. 2501-2513 ◽  
Author(s):  
Paulsamy Muruganandam ◽  
Sadhan K Adhikari
Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 844-849 ◽  
Author(s):  
M. Ali Riahi ◽  
Christopher Juhlin

Finite‐difference methods have generally been used to solve dynamic wave propagation problems over the last 25 years (Alterman and Karal, 1968; Boore, 1972; Kelly et al., 1976; and Levander, 1988). Recently, finite‐difference methods have been applied to the eikonal equation to calculate the kinematic solution to the wave equation (Vidale, 1988 and 1990; Podvin and Lecomte, 1991; Van Trier and Symes, 1991; Qin et al., 1992). The calculation of the first‐arrival times using this method has proven to be considerably faster than using classical ray tracing, and problems such as shadow zones, multipathing, and barrier penetration are easily handled. Podvin and Lecomte (1991) and Matsuoka and Ezaka (1992) extended and expanded upon Vidale’s (1988) algorithm to calculate traveltimes for reflected waves in two dimensions. Based on finite‐difference calculations for first‐arrival times, Hole et al. (1992) devised a scheme for inverting synthetic and real data to estimate the depth to refractors in the crust in three dimensions. The method of Hole et al. (1992) for inversion is computationally efficient since it avoids the matrix inversion of many of the published schemes for refraction and reflection traveltime data (Gjøystdal and Ursin, 1981).


Author(s):  
Klaus Morawetz

The Bose–Einstein condensation and appearance of superfluidity and superconductivity are introduced from basic phenomena. A systematic theory based on the asymmetric expansion of chapter 11 is shown to correct the T-matrix from unphysical multiple-scattering events. The resulting generalised Soven scheme provides the Beliaev equations for Boson’s and the Nambu–Gorkov equations for fermions without the usage of anomalous and non-conserving propagators. This systematic theory allows calculating the fluctuations above and below the critical parameters. Gap equations and Bogoliubov–DeGennes equations are derived from this theory. Interacting Bose systems with finite temperatures are discussed with successively better approximations ranging from Bogoliubov and Popov up to corrected T-matrices. For superconductivity, the asymmetric theory leading to the corrected T-matrix allows for establishing the stability of the condensate and decides correctly about the pair-breaking mechanisms in contrast to conventional approaches. The relation between the correlated density from nonlocal kinetic theory and the density of Cooper pairs is shown.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 206
Author(s):  
María Consuelo Casabán ◽  
Rafael Company ◽  
Lucas Jódar

This paper deals with the search for reliable efficient finite difference methods for the numerical solution of random heterogeneous diffusion reaction models with a finite degree of randomness. Efficiency appeals to the computational challenge in the random framework that requires not only the approximating stochastic process solution but also its expectation and variance. After studying positivity and conditional random mean square stability, the computation of the expectation and variance of the approximating stochastic process is not performed directly but through using a set of sampling finite difference schemes coming out by taking realizations of the random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic expressions collapsing the approach is avoided keeping reliability. Results are simulated and a procedure for the numerical computation is given.


Sign in / Sign up

Export Citation Format

Share Document