One-dimensional modelling of coupled heat and mass transfer at solid/liquid moving interface

1990 ◽  
Vol 104 (3) ◽  
pp. 701-712 ◽  
Author(s):  
A. Rouzaud
1984 ◽  
Vol 6 (4) ◽  
pp. 12-20
Author(s):  
Duong Ngoc Hai

Steady one-dimensional nonstationary flow of boiling liquid from finite or infinit pipe in a consideration of the effect of the phase-boundary heat and mass transfer. The Received system of quasi-linear differential equations has been decided by the modificati on of Lax - wendroff method in IBM. Numerical results are compared as xperimental data.


2018 ◽  
Vol 178 ◽  
pp. 222-237 ◽  
Author(s):  
Carlos L. Bassani ◽  
Fausto A.A. Barbuto ◽  
Amadeu K. Sum ◽  
Rigoberto E.M. Morales

Author(s):  
Duc Hai Do ◽  
Eckehard Specht

A mathematical model of lime calcination process in normal shafts kiln has been developed to determine the heat and mass transfer between the gas and the solid. The model is one-dimensional and steady state. The transport of mass and energy of the gas and the solid is modeled by a system of ordinary differential equations. A shrinking core approach is employed for the mechanics and chemical reactions of the solid material. The model can be used to predict the temperature profiles of the particle bed, the gas phase along the length of kiln axis. The calcination behavior of the particle bed can be also investigated. The influences of operational parameters such as: energy input, the origin of feed limestone and the lime throughput on the kiln performance including pressure drop are considered. Additionally, the local heat loss through the kiln wall is studied. The results of this study are direct utility for optimization and design of large-scale technical shaft kilns.


1994 ◽  
Vol 116 (1) ◽  
pp. 215-220 ◽  
Author(s):  
Shi-Wen Peng ◽  
Guo-Qian Chen

The present work discusses coupled heat and mass transfer during freeze-drying of a rigid product, as well as accelerated freeze-drying where sublimation and desorption occur concurrently. A desorption mushy zone model was developed to describe the desorption drying. An exact solution was obtained for coupled heat and mass transfer with one discrete sublimation moving interface and one desorption mushy zone where mass transfer is controlled by both Fick and Darcy laws. The effects of several parameters on the sublimation and desorption are analyzed and discussed.


Author(s):  
Erik Johansson ◽  
Toru Yamada ◽  
Jinliang Yuan ◽  
Bengt Sundén ◽  
Yutaka Asako ◽  
...  

In this paper, energy conserving Dissipative Particle Dynamics (DPDe) is used to study liquid characteristics when the walls are kept at a melting temperature. The formulation of the phase change problem is based on the latent heat model available in the literature. It is incorporated into the DPDe method to simulate a one-dimensional solid-liquid moving boundary problem. The solution domain is considered to be a two-dimensional Cartesian box where DPDe particles are randomly distributed. Periodic boundary conditions are applied in the flow direction and solid DPDe particles are placed as additional layers on the top and bottom of the domain. The DPDe result was compared with the available analytical solution and the effects of the DPDe parameters and thermal characteristics are discussed.


2001 ◽  
Vol 37 (2-3) ◽  
pp. 237-242 ◽  
Author(s):  
T.-J. Lu ◽  
J.-H. Du ◽  
S.-Y. Lei ◽  
B.-X. Wang

Sign in / Sign up

Export Citation Format

Share Document