Exact solutions for two-dimensional groundwater flow problems involving a semi-pervious boundary

1978 ◽  
Vol 37 (1-2) ◽  
pp. 159-168 ◽  
Author(s):  
P. Van Der Veer
1963 ◽  
Vol 30 (2) ◽  
pp. 263-268 ◽  
Author(s):  
J. A. Schetz

The need for a general technique for the approximate solution of viscous-flow problems is discussed. Existing methods are considered and a new method is presented which results in simple closed-form solutions. The accuracy of the method is demonstrated by comparisons with the results of known exact solutions, and finally the general technique is employed to determine a new solution for the fully expanded two-dimensional laminar nozzle problem.


1975 ◽  
Vol 67 (4) ◽  
pp. 787-815 ◽  
Author(s):  
Allen T. Chwang ◽  
T. Yao-Tsu Wu

The present study further explores the fundamental singular solutions for Stokes flow that can be useful for constructing solutions over a wide range of free-stream profiles and body shapes. The primary singularity is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives other fundamental singularities can be obtained, including rotlets, stresslets, potential doublets and higher-order poles derived from them. For treating interior Stokes-flow problems new fundamental solutions are introduced; they include the Stokeson and its derivatives, called the roton and stresson.These fundamental singularities are employed here to construct exact solutions to a number of exterior and interior Stokes-flow problems for several specific body shapes translating and rotating in a viscous fluid which may itself be providing a primary flow. The different primary flows considered here include the uniform stream, shear flows, parabolic profiles and extensional flows (hyper-bolic profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders. The salient features of these exact solutions (all obtained in closed form) regarding the types of singularities required for the construction of a solution in each specific case, their distribution densities and the range of validity of the solution, which may depend on the characteristic Reynolds numbers and governing geometrical parameters, are discussed.


Sign in / Sign up

Export Citation Format

Share Document