Amino acid composition and tumour formation in the tu-C4 melanotic tumour strain of Drosophila melanogaster

1971 ◽  
Vol 17 (7) ◽  
pp. 1217-1223
Author(s):  
A.L. Belt
Author(s):  
Tayah Hopes ◽  
Michaela Agapiou ◽  
Karl Norris ◽  
Charley G.P. McCarthy ◽  
Mary J O’Connell ◽  
...  

ABSTRACTRibosomes have long been thought of as homogeneous, macromolecular machines but recent evidence suggests they are heterogeneous and could be specialised to regulate translation. Here, we have characterised ribosomal protein heterogeneity across 5 tissues of Drosophila melanogaster. We find that testes and ovaries contain the most heterogeneous ribosome populations, which occurs through paralog-switching. We have solved structures of ribosomes purified from in vivo tissues by cryo-EM, revealing differences in precise ribosomal arrangement for testis and ovary 80S ribosomes. Differences in the amino acid composition of paralog pairs and their localisation on the ribosome exterior indicate paralog-switching could alter the ribosome surface, enabling different proteins to regulate translation. One testis-specific paralog-switching pair is also found in humans, suggesting this is a conserved site of ribosome heterogeneity. Overall, this work allows us to propose that mRNA translation might be regulated in the gonads through ribosome heterogeneity, providing a potential means of ribosome specialisation.


2014 ◽  
Author(s):  
Alexandra Jayne Kermack ◽  
Ying Cheong ◽  
Nick Brook ◽  
Nick Macklon ◽  
Franchesca D Houghton

2020 ◽  
Vol 36 (4) ◽  
pp. 49-58
Author(s):  
V.V. Kolpakova ◽  
R.V. Ulanova ◽  
L.V. Chumikina ◽  
V.V. Bessonov

The goal of the study was to develop a biotechnological process for the production of protein concentrates via bioconversion of pea flour and whey, a secondary product of starch manufacture. Standard and special methods were used to analyze the chemical and biochemical composition of protein concentrates (amino acid, carbohydrate, and fractional) of flour, whey and protein concentrates. It was established that pea flour contains 52.28-57.05% water-soluble nitrogenous substances, 23.04-25.50% salt-soluble, 2.94-4.69% alcohol-soluble compounds, 0-0.61% of soluble glutenine, 6.67-10.40% alkali-soluble glutenine and 5.96-10.86% insoluble sclerotic substances. A mathematical model and optimal parameters of the enzymatic extraction of pea protein with a yield of 65-70% were developed. Ultrasonic exposure increased the yield of nitrogenous substances by 23.16 ± 0.69%, compared with the control without ultrasound. The protein concentrate had a mass fraction of nitrogenous substances of 72.48 ± 0.41% (Nx6.25) and a complete amino acid composition. The microbial conversion by the Saccharomyces cerevisiae 121 and Geotrichum candidum 977 cultures of starch whey which remained after protein precipitation allowed us to obtain feed concentrates from biomass and culture liquid with a protein mass fraction of 61.68-70.48% (Nx6.25). Protein concentrates positively affected the vital signs of rats and their excretory products. A technological scheme was developed to test the complex pea grain and starch whey processing under pilot conditions. pea, protein concentrate, extracts, whey, bioconversion, Geotrichum candidum, Saccharomyces cerevisiae, chemical composition, amino acid composition


Sign in / Sign up

Export Citation Format

Share Document