Biological Processing of Pea Grain and Secondary Starch Raw Materials to Produce Food and Feed Protein Concentrates

2020 ◽  
Vol 36 (4) ◽  
pp. 49-58
Author(s):  
V.V. Kolpakova ◽  
R.V. Ulanova ◽  
L.V. Chumikina ◽  
V.V. Bessonov

The goal of the study was to develop a biotechnological process for the production of protein concentrates via bioconversion of pea flour and whey, a secondary product of starch manufacture. Standard and special methods were used to analyze the chemical and biochemical composition of protein concentrates (amino acid, carbohydrate, and fractional) of flour, whey and protein concentrates. It was established that pea flour contains 52.28-57.05% water-soluble nitrogenous substances, 23.04-25.50% salt-soluble, 2.94-4.69% alcohol-soluble compounds, 0-0.61% of soluble glutenine, 6.67-10.40% alkali-soluble glutenine and 5.96-10.86% insoluble sclerotic substances. A mathematical model and optimal parameters of the enzymatic extraction of pea protein with a yield of 65-70% were developed. Ultrasonic exposure increased the yield of nitrogenous substances by 23.16 ± 0.69%, compared with the control without ultrasound. The protein concentrate had a mass fraction of nitrogenous substances of 72.48 ± 0.41% (Nx6.25) and a complete amino acid composition. The microbial conversion by the Saccharomyces cerevisiae 121 and Geotrichum candidum 977 cultures of starch whey which remained after protein precipitation allowed us to obtain feed concentrates from biomass and culture liquid with a protein mass fraction of 61.68-70.48% (Nx6.25). Protein concentrates positively affected the vital signs of rats and their excretory products. A technological scheme was developed to test the complex pea grain and starch whey processing under pilot conditions. pea, protein concentrate, extracts, whey, bioconversion, Geotrichum candidum, Saccharomyces cerevisiae, chemical composition, amino acid composition

2021 ◽  
pp. 38-40
Author(s):  
Денис Сергеевич Куликов ◽  
Валентина Андреевна Гулакова ◽  
Валентина Васильевна Колпакова ◽  
Рузалия Владимировна Уланова

Из зерна нута получены белковые концентраты пищевого и кормового назначения с массовой долей белка на сухое вещество 83,22±0,35 % и 54,22±0,46 % соответственно и сбалансированным аминокислотным составом. Protein concentrates for food and feed purposes were obtained from chickpea grains with a mass fraction of protein per dry matter of 83.22±0.35 % and 54.22±0.46 %, respectively, and a balanced amino acid composition.


2019 ◽  
Vol 49 (2) ◽  
pp. 301-311 ◽  
Author(s):  
Валентина Колпакова ◽  
Valentina Kolpakova ◽  
Рузалия Уланова ◽  
Ruzaliya Ulanova ◽  
Денис Куликов ◽  
...  

The present paper features processes of serum biotransformation. The serum was obtained from triticale extract and pea flour after protein concentrates of increased biological value had been extracted. The research objective was to obtain microbial and vegetable feed concentrates by using a composition of Saccharomyces cerevisiae121 yeast and the yeast-like fungus Geotrichumcandidum 977. The mass fraction of protein in the two-component composites was 75–80% of the dry matter. The score of the first and the second limiting amino acids (lysine and threonine) equaled 103–113%, and that of the third acid (sulfur- containing) was 71–72%. The chemical composition of the composites corresponded to the ‘Concentrates’ group; the values of their functional and technological properties were typical of concentrates from other types of grain crops. The study revealed some cultures that are able to actively develop in serum, which is a secondary product of processing the extract after protein isolation. A symbiotic ferment was prepared from the fungus Geotrichumcandidum 977 and the yeast Saccharomyces cerevisiae 121, which ensures the growth of biomass in a carbohydrate- and nitrogen-containing medium. Proteins were isolated under the action of amylase, glucoamylase, cellulose, and xylanase. The amount of high-molecular compounds (dextrins) and trioses (raffinose) released from the interaction with protein and non-starch polysaccharides decreased 2–4 times in the solution. The amount of glucose, disaccharides, xylose, and galactose increased 2–10 times, compared with the original extracts. The serum remaining after the removal of the main mass of the protein was enriched with low molecular weight mono- and oligosaccharides, which positively affected the growth of microorganisms. The mass fraction of proteins in the microbial-vegetable composite obtained from the extract with the triticale proteins and pea flour ratio of 1:5 was 15% higher than at the ratio of 1:3. Microbial and vegetable concentrates with a mass fraction of protein of 55.8–75.1% of dry matter can be used in fodder production as a protein-carbohydrate additive. Protein composites made of protein triticale and peas with a complementary amino acid composition can improve the biological value and performance of food products.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2767
Author(s):  
Anna Andreeva ◽  
Ekaterina Budenkova ◽  
Olga Babich ◽  
Stanislav Sukhikh ◽  
Elena Ulrikh ◽  
...  

Microalgae are known to be rich in protein. In this study, we aim to investigate methods of producing and purifying proteins of 98 microalgae including Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, and Pleurochrysis carterae (Baltic Sea). Therefore, we studied their amino acid composition and developed a two-stage protein concentrate purification method from the microalgae biomass. After an additional stage of purification, the mass fraction of protein substances with a molecular weight greater than 50 kDa in the protein concentrate isolated from the biomass of the microalga Dunaliella salina increased by 2.58 times as compared with the mass fraction before filtration. In the protein concentrate isolated from the biomass of the microalga Pleurochrysis cartera, the relative content of the fraction with a molecular weight greater than 50.0 kDa reached 82.4%, which was 2.43 times higher than the relative content of the same fractions in the protein concentrate isolated from this culture before the two-stage purification. The possibilities of large-scale industrial production of microalgae biomass and an expanded range of uses determine the need to search for highly productive protein strains of microalgae and to optimize the conditions for isolating amino acids from them.


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (3) ◽  
pp. 205-213
Author(s):  
N. V. Linovskaya ◽  
E. V. Mazukabzova ◽  
O. S. Rudenko ◽  
T. V. Savenkova

Milk chocolate is particularly popular with different age groups. It is characterized by low protein content with a large amount of fats and carbohydrates determining the food imbalance of the product. In conditions of high-grade animal proteins deficiency the selection of high-quality protein-containing ingredients for food production is very relevant. The aim of this work is to study the protein adequacy of various components of milk chocolate to enhance its biological value. The amino acid scale method has been used to assess the biological value of proteins; it is based on the determination of amino acid (chemical) score. It has been found that the limiting biological value amino acid for classical white raw ingredients of milk chocolate (cocoa products and milk powder) is methionine + cysteine. For constructing chocolate formulas with increased biological value it is advisable to use protein-containing raw materials (whey protein concentrate, oat flour, etc.) to compensate for the limiting amino acids. The indicator of amino acids utilitarianity of proteins of raw milk chocolate components has been calculated. On the basis of the utilitarian index we have established the coefficient of utilitarian of the amino acid composition of the raw materials characterizing essential amino acids' balance. We have determined the biological value of protein and the amino acid composition imbalance coefficient. It has been found that the amino acid composition of milk and whey protein concentrates is most balanced compared to the amino acid composition of traditional protein-containing raw components of milk chocolate. The limiting acid of whey protein concentrate is valine, which makes its use in the manufacture of chocolate products more attractive compared to milk protein concentrate (the limiting amino acid is methionine + cysteine). In the group of vegetable non-conventional raw materials oat and buckwheat flour are characterized by the best indicators of biological value. The amino acid adequacy of oat flour is comparable to the qualitative protein indicators of cocoa products, the limiting amino acid is lysine. Buckwheat flour is characterized by the smallest imbalance in amino acid composition, which distinguishes the proteins of this raw material with the highest degree of digestibility compared with the proteins of all the studied protein-containing components of milk chocolate.


1978 ◽  
Vol 14 (1) ◽  
pp. 93-94 ◽  
Author(s):  
V. A. Savangikar ◽  
R. N. Joshi

SUMMARYLeaf protein concentrate was prepared from the weed Parthenium hysterophorus L. and the nutritional properties of this preparation were studied in relation to its amino acid composition and digestibility. The product and the residual fibre closely resembled similar products made from conventional forage species.


Author(s):  
R. Ulanova ◽  
V. Gulakova ◽  
V. Kolpakova

The data were obtained on the development of biotechnology of food protein concentrate from pea grains and bioconversion of cereal serum with Saccharomyces cerevisiae 121 yeast and a new strain of the fungus Geotrichum candidum 977 with the formation of a feed microbial-plant preparation.


Sign in / Sign up

Export Citation Format

Share Document