Investigation of the internal rotation of methyl groups by T1 relaxation measurements

1978 ◽  
Vol 31 (1) ◽  
pp. 33-40 ◽  
Author(s):  
E Haslinger ◽  
R.M Lynden-Bell
2021 ◽  
Vol 154 (22) ◽  
pp. 224501
Author(s):  
Carmine D’Agostino ◽  
Stefan J. Davis ◽  
Andrew P. Abbott

1993 ◽  
Vol 48 (11) ◽  
pp. 1093-1101 ◽  
Author(s):  
C. Thomsen ◽  
H. Dreizler

Abstract The rotational spectrum of 2,6-lutidine, (CH3)2C5H3N, has been recorded between 6 and 26.5 GHz using pulsed molecular beam microwave Fourier transform spectroscopy. The rotational constants are A = 3509.7139(84) MHz, B = 1906.8639(101) MHz, and C = 1254.6215(14) MHz, the barrier to internal rotation of the two methyl groups is V3 = 1.1752 kJ/mol, their moments of inertia were found to be Iα = 3.0808(9) uÅ2 . The nitrogen nuclear quadrupole constants are χaa = +1.600(5) MHz, χbb = -4.572(3) MHz and χcc = +2.972(5) MHz.


1980 ◽  
Vol 33 (11) ◽  
pp. 2337 ◽  
Author(s):  
L Radom ◽  
NV Riggs

Diacetamide, like other diacylamines, is capable of existing in three basic conformations about the N-C bonds. Optimization (STO-3G) of model systems in which all first-row atoms and the amido hydrogen atom are held coplanar predicts that the E,Z conformer (3) is of lowest energy, the Z,Z conformer (2) of somewhat higher energy (4.2 kJ mol-1), and the E,E conformer (1) of highest energy (23.6 kJ mol-1); 4-31G evaluation of the energies suggests that (1) and (2) are each of higher energy than (3) by 27-28 kJ mol-1. It is suggested that (2) is destabilized with respect to (3) by electrostatic repulsion of the two negatively charged oxygen atoms whereas destabilization of (1) is due to substantial methyl-methyl steric interactions as reflected in the very wide <CNC (136°); the energy of (1) is, however, raised by out-of-plane or rotational movements of the methyl groups, i.e., the preferred structure (excluding methyl hydrogens) is planar. The calculated height of the barrier to internal rotation of (3) by either of two model transition states is 41-45 kJ mol-1, in good agreement with an experimental value of 45.2 kJ mol-1 in solution at -60°.


2020 ◽  
Vol 10 (15) ◽  
pp. 5317
Author(s):  
Jean-Michel Roger ◽  
Silvia Mas Garcia ◽  
Mireille Cambert ◽  
Corinne Rondeau-Mouro

This work presents a novel and rapid approach to predict fat content in butter products based on nuclear magnetic resonance longitudinal (T1) relaxation measurements and multi-block chemometric methods. The potential of using simultaneously liquid (T1L) and solid phase (T1S) signals of fifty samples of margarine, butter and concentrated fat by Sequential and Orthogonalized Partial Least Squares (SO-PLS) and Sequential and Orthogonalized Selective Covariance Selection (SO-CovSel) methods was investigated. The two signals (T1L and T1S) were also used separately with PLS and CovSel regressions. The models were compared in term of prediction errors (RMSEP) and repeatability error (σrep). The results obtained from liquid phase (RMSEP ≈ 1.33% and σrep≈ 0.73%) are better than those obtained with solid phase (RMSEP ≈ 5.27% and σrep≈ 0.69%). Multiblock methodologies present better performance (RMSEP ≈ 1.00% and σrep≈ 0.47%) and illustrate their power in the quantitative analysis of butter products. Moreover, SO-Covsel results allow for proposing a measurement protocol based on a limited number of NMR acquisitions, which opens a new way to quantify fat content in butter products with reduced analysis times.


1985 ◽  
Vol 40 (3) ◽  
pp. 271-273 ◽  
Author(s):  
G. Bestmann ◽  
W. Lalowski ◽  
H. Dreizler

The internal rotation barrier V3, the moment of inertia Iα of the methyl tops and the angle between the two internal rotation axes were determined from the torsional fine structure of the rotational spectrum in the torsional ground state. A tilt angle of 1.4° of the methyl groups toward each other results.


Sign in / Sign up

Export Citation Format

Share Document