A theoretical study of molecular structure in the excited state and molecular luminescence

1976 ◽  
Vol 30 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Filip Fratev
RSC Advances ◽  
2018 ◽  
Vol 8 (52) ◽  
pp. 29589-29597 ◽  
Author(s):  
Jianhui Han ◽  
Xiaochun Liu ◽  
Chaofan Sun ◽  
You Li ◽  
Hang Yin ◽  
...  

Harnessing ingenious modification of molecular structure to regulate excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) characteristics holds great promise in fluorescence sensing and imaging.


1990 ◽  
Vol 55 (8) ◽  
pp. 1891-1895 ◽  
Author(s):  
Peter Ertl

Twisting of the NMe2 group in p-N,N-dimethylaminobenzonitrile (DMABN) was investigated using AM1 semiempirical method with configuration interaction. Effect of polar media was considered by placing + and - charge centers ("sparkles") at appropriate places opposite the molecule. Optimized ground state geometry of DMABN is slightly twisted with the lowest vertical excited state of 1B character. As the polarity of media increases and/or the - NMe2 group twists, the symmetric 1A excited state having considerable charge separation becomes energetically favorable. Anomalous long-wavelength emission of DMABN comes from this state.


2014 ◽  
Vol 887-888 ◽  
pp. 931-934
Author(s):  
Hong Bin Chen ◽  
Ying Zhu ◽  
Jie Wu

Our theoretical study aims to the way of obtain C3H4O+ fragments laser-induced by Cycloheptanone ion (C7H12O+ ) excited state and gives out a result with proved and directed significance for the corresponding experiments. Using the CIS(Configuration Interaction with Single Substitute) method, calculated Cycloheptanone ion excited state structure and vibrational frequencies.


Sign in / Sign up

Export Citation Format

Share Document