Time-dependent flow properties from indentation tests

1981 ◽  
Vol 104 ◽  
pp. 1539-1543 ◽  
Author(s):  
G.E. Lucas ◽  
C. Pendleton
Biorheology ◽  
1986 ◽  
Vol 23 (1) ◽  
pp. 63-74 ◽  
Author(s):  
D.E. McMillan ◽  
N.G. Utterback ◽  
M. Nasrinasrabadi ◽  
M.M. Lee

2021 ◽  
pp. 1-33
Author(s):  
Süleyman Özen ◽  
Muhammet Gökhan Altun ◽  
Ali Mardani-Aghabaglou ◽  
Kambiz Ramyar

In this study, the effect of main chain and side chain length of polycarboxylate-ether based high range water reducing admixture (WRA) on the fresh properties, compressive strength and water absorption of cementitious systems containing 0, 15, 30 and 45 wt.% fly ash was investigated. For this purpose, 3 WRAs with same molecular weight but different chain lengths were produced. According to test results, flowability of paste and mortars was negatively affected when the length of the main chain and side chains of the admixture was longer or shorter than a certain value. This adverse effect is thought to be arisen from the weakening of the adsorption of admixture with increase of its chain lengths. However, when the main chain and side chain lengths of the admixture were shorter or longer than a certain value, the time-dependent flow properties of the mortar mixtures improved. The main chain and side chain lengths of the WRAs had not a significant effect on the compressive strength and water absorption capacity of the mortar mixtures. However, irrespective of the admixture characteristics, with the increase of fly ash substitution the flow and time-dependent flow properties of the mixtures were negatively affected but their water absorption decreased.


2004 ◽  
Vol 218 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Basim Abu-Jdayil ◽  
Hazim A. Mohameed

Author(s):  
Santanu Basu ◽  
US Shivhare ◽  
GSV Raghavan

Jam is an intermediate moisture food containing fruit pulp, pectin, sugar and acid. The effect of sugar and pectin concentration, pH, shear rate and temperature on the time dependent rheological properties of pineapple jam was studied using a rheometer. Pineapple jam exhibited thixotropic behavior. Shear stress of the pineapple jam at a particular time of shearing depended on the shear rate, temperature and composition. Weltman, Hahn, and Figoni and Shoemaker, models were applied to describe the time dependent flow properties of pineapple jam. Hahn model described adequately the rheological characteristics of pineapple jam.


2004 ◽  
Vol 127 (3) ◽  
pp. 400-415 ◽  
Author(s):  
Amador M. Guzmán ◽  
Rodrigo A. Escobar ◽  
Cristina H. Amon

Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.


Sign in / Sign up

Export Citation Format

Share Document