Three-dimensional wave propagation analysis of a smoothly heterogeneous solid

1995 ◽  
Vol 43 (4) ◽  
pp. 533-551 ◽  
Author(s):  
R Pak
2002 ◽  
Vol 85 (2) ◽  
pp. 312-332 ◽  
Author(s):  
KLAUS WEIHRAUCH ◽  
NING ZHONG

According to the Church-Turing Thesis a number function is computable by the mathematically defined Turing machine if and only if it is computable by a physical machine. In 1983 Pour-El and Richards defined a three-dimensional wave $u(t,x)$ such that the amplitude $u(0,x)$ at time 0 is computable and the amplitude $u(1,x)$ at time 1 is continuous but not computable. Therefore, there might be some kind of wave computer beating the Turing machine. By applying the framework of Type 2 Theory of Effectivity (TTE), in this paper we analyze computability of wave propagation. In particular, we prove that the wave propagator is computable on continuously differentiable waves, where one derivative is lost, and on waves from Sobolev spaces. Finally, we explain why the Pour-El-Richards result probably does not help to design a wave computer which beats the Turing machine.2000 Mathematical Subject Classification: 03D80, 03F60, 35L05, 68Q05.


Author(s):  
Akemi Nishida

It is becoming important to carry out detailed modeling procedures and analyses to better understand the actual phenomena. Because some accidents caused by high-frequency vibrations of piping have been recently reported, the clarification of the dynamic behavior of the piping structure during operation is imperative in order to avoid such accidents. The aim of our research is to develop detailed analysis tools and to determine the dynamic behavior of piping systems in nuclear power plants, which are complicated assemblages of different parts. In this study, a three-dimensional dynamic frame analysis tool for wave propagation analysis is developed by using the spectral element method (SEM) based on the Timoshenko beam theory. Further, a multi-connected structure is analyzed and compared with the experimental results. Consequently, the applicability of the SEM is shown.


Sign in / Sign up

Export Citation Format

Share Document