wave propagation problem
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 250 ◽  
pp. 02010
Author(s):  
Kotaro Miura ◽  
Makoto Sakamoto ◽  
Yuji Tanabe

We consider the transient wave propagation problem of linear, isotropic and elastic plate applied SH impact loading on the surface. Analytical solution of half-space obtained by the inverse Fourier-Laplace double transform using Cagniard-De Hoop method. The wave propagation problem of plate was considered by using a half-space exact solution and reflect wave from the boundary of plate are expressed using the image method. Some numerical results of stress and displacement components are presented. The mathematical technique appear in the basic problem can apply to the transient P wave propagation and more advanced problems.


2020 ◽  
Vol 10 (24) ◽  
pp. 9032
Author(s):  
Hyeong Seok Koh ◽  
Jong Wook Lee ◽  
Kiwoon Kwon ◽  
Gil Ho Yoon

This study develops a new response filtering approach for recovering dynamic mechanical stresses under impact loading. For structural safety, it is important to consider the propagation of transient mechanical stresses inside structures under impact loads. Commonly, mechanical stress waves can be obtained by solving Newton’s second law using explicit or implicit finite element procedures. Regardless of the numerical approach, large discrepancies called the Gibb’s phenomenon are observed between the numerical solution and the analytical solution. To reduce these discrepancies and enhance the accuracy of the numerical solution, this study develops a response filtering method (RFM). The RFM averages the transient responses within split time domains. By solving several benchmark problems and analyzing the stresses in the frequency domain, it was possible to verify that the RFM can provide an improved solution that converges toward the analytical solution. A mathematical theory is also presented to correlate the relationship between the filtering length and the frequency components of the filtered stress values.


Author(s):  
М.С. Лытаев

Рассматривается задача численного моделирования распространения электромагнитных волн в неоднородной тропосфере на основе широкоугольных обобщений метода параболического уравнения. Используется конечно-разностная аппроксимация Паде оператора распространения. Существенно, что в предлагаемом подходе указанная аппроксимация осуществляется одновременно по продольной и поперечной координатам. При этом допускается моделирование произвольного коэффициента преломления тропосферы. Метод не накладывает ограничений на максимальный угол распространения. Для различных условий распространения радиоволн проведено сравнение с методом расщепления Фурье и методом геометрической теории дифракции. Показаны преимущества предлагаемого подхода. This paper is devoted to the numerical simulation of electromagnetic wave propagation in an inhomogeneous troposphere. The study is based on the wide-angle generalizations of the parabolic wave equation. The finite-difference Padé approximation is used to approximate the propagation operator. It is important that, within the proposed approach, the Padé approximation is carried out simultaneously along with the longitudinal and transverse coordinates. At the same time, the proposed approach gives an opportunity to model an arbitrary tropospheric refractive index. The method does not impose restrictions on the maximum propagation angle. The comparison with the split-step Fourier method and the geometric theory of diffraction is discussed. The advantages of the proposed approach are shown.


2020 ◽  
Vol 22 (3) ◽  
pp. 789-808
Author(s):  
Barbara Tomczyk ◽  
Anna Litawska

AbstractThe objects of consideration are thin linearly elastic Kirchhoff-Love-type circular cylindrical shells having a periodically microheterogeneous structure in circumferential and axial directions (biperiodic shells). The aim of this contribution is to study a certain long wave propagation problem related to micro-fluctuations of displacement field caused by a periodic structure of the shells. This micro-dynamic problem will be analysed in the framework of a certain mathematical averaged model derived by means of the combined modelling procedure. The combined modelling applied here includes two techniques: the asymptotic modelling procedure and a certain extended version of the known tolerance non-asymptotic modelling technique based on a new notion of weakly slowly-varying function. Both these procedures are conjugated with themselves under special conditions. Contrary to the starting exact shell equations with highly oscillating, non-continuous and periodic coefficients, governing equations of the averaged combined model have constant coefficients depending also on a cell size. It will be shown that the micro-periodic heterogeneity of the shells leads to exponential micro-vibrations and to exponential waves as well as to dispersion effects, which cannot be analysed in the framework of the asymptotic models commonly used for investigations of vibrations and wave propagation in the periodic structures.


2020 ◽  
Vol 7 (2) ◽  
pp. 334-344
Author(s):  
F. Z. Ait Bella ◽  
◽  
M. El Rhabi ◽  
A. Hakim ◽  
A. Laghrib ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 130-135
Author(s):  
E. Smolkin ◽  
M. Snegur

The propagation of monochromatic electromagnetic waves in metal circular cylindrical dielectric waveguide with longitudinal magnetization filled with anisotropic inhomogeneous waveguide is considered. The physical problem is reduced to solving a transmission eigenvalue problem for a system of ordinary differential equations. Spectral parameters of the problem are propagation constants of the waveguide. Numerical results are obtained using a modification of the projecting methods. The comparison with known exact solutions (for particular values of parameters) are made.


Sign in / Sign up

Export Citation Format

Share Document