PH influence on enzymic activity: The involvement of two active ionized forms of either substrate or enzyme in the reaction

1978 ◽  
Vol 75 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Umberto Mura ◽  
Carlo Bauer
1989 ◽  
Vol 61 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Richard A Harvey ◽  
Hugh C Kim ◽  
Jonathan Pincus ◽  
Stanley Z Trooskin ◽  
Josiah N Wilcox ◽  
...  

SummaryTissue plasminogen activator labeled with radioactive iodine (125I-tPA) was immobilized on vascular prostheses chemically modified with a thin coating of water-insoluble surfactant, tridodecylmethylammonium chloride (TDM AC). Surfactant- treated Dacron, polytetrafluoroethylene (PTFE), silastic, polyethylene and polyurethane bound appreciable amounts of 125I- tPA (5-30 μg 125I-tPA/cm2). Upon exposure to human plasma, the amount of 125I-tPA bound to the surface shows an initial drop during the first hour of incubation, followed by a slower, roughly exponential release with a t½ of appoximately 75 hours. Prostheses containing bound tPA show fibrinolytic activity as measured both by lysis of clots formed in vitro, and by hydrolysis of a synthetic polypeptide substrate. Prior to incubation in plasma, tPA bound to a polymer surface has an enzymic activity similar, if not identical to that of the native enzyme in buffered solution. However, exposure to plasma causes a decrease in the fibrinolytic activity of both bound tPA and enzyme released from the surface of the polymer. These data demonstrate that surfactant-treated prostheses can bind tPA, and that these chemically modified devices can act as a slow-release drug delivery system with the potential for reducing prosthesis-induced thromboembolism.


1993 ◽  
Vol 58 (2) ◽  
pp. 445-451 ◽  
Author(s):  
Vladimír Žúbor ◽  
Albert Breier ◽  
Marta Horváthová ◽  
Dagmar Hagarová ◽  
Peter Gemeiner ◽  
...  

The crude extract of cytosole enzymes was obtained from homogenized cells of Saccharomyces cerevisiae by partition. The enzyme was then isolated from the lower aqueous phase displaying higher glycerol kinase activity by dye-ligand chromatography on Cibacron Blue (CB) or Remazol Brilliant Blue R (RB)-derivatized bead-cellulose, ATP being the eluent. The specific activity of glycerol kinase rised more than 10 and 7-times after affinity dye-ligand chromatography and hydrophobic interaction chromatography, respectively. Glycerol kinase obtained by the latter method was purified by CB-bead cellulose. The final preparation maintained its enzymic activity without noticeable losses during a long-term storage at 4 °C in dark.


1965 ◽  
Vol 97 (1) ◽  
pp. 112-124 ◽  
Author(s):  
PJ Peterson ◽  
L Fowden

1. A prolyl-s-RNA synthetase (prolyl-transfer RNA synthetase) has been purified about 250-fold from seed of Phaseolus aureus (mung bean), a species not producing azetidine-2-carboxylic acid, and more than 10-fold from rhizome apices of Polygonatum multiflorum, a liliaceous species containing azetidine-2-carboxylic acid. The latter enzyme was unstable during ammonium sulphate fractionation. 2. The enzymes exhibited different substrate specificities towards the analogue. That from Phaseolus, when assayed by the ATP-PP(i) exchange, showed azetidine-2-carboxylic acid activation at about one-third the rate with proline. Both labelled imino acids gave rise to a labelled aminoacyl-s-RNA. The enzyme from Polygonatum, however, activated only proline. 3. The enzyme from Polygonatum also formed a labelled prolyl-s-RNA with Phaseolus s-RNA but at a lower rate than when the Phaseolus enzyme was used. No reaction occurred when the Phaseolus enzyme was coupled with Polygonatum s-RNA, and only a very slight one was observed when both enzyme and s-RNA came from Polygonatum. 4. Protein preparations from seeds of Pisum sativum, another species not producing azetidine-2-carboxylic acid, also activated the analogue in addition to proline, whereas those from rhizome and seeds of Convallaria, the species from which the analogue was originally isolated, failed to activate it. However, a liliaceous species not producing the analogue, Asparagus officinalis, activated it. 5. Of the other proline analogues investigated, only 3,4-dehydro-dl-proline and l-thiazolidine-4-carboxylic acid were active with the enzyme preparation from Phaseolus. 6. pH optima of 7.9 and 8.4 were established for the enzymes from Phaseolus and Polygonatum respectively. 7. The Phaseolus enzyme was specific for ATP and PP(i). Mn(2+) partially replaced the requirement for Mg(2+) as cofactor. Preincubation with p-chloromercuribenzoate at a concentration of 0.5mm or higher produced over 99% inhibition of the Phaseolus enzyme. One-half the enzymic activity was destroyed by preheating for 5min. at 62 degrees in tris-hydrochloric acid buffer, pH7.9. 8. All experimental evidence supports the hypothesis that azetidine-2-carboxylic acid and proline are activated by the same enzyme in Phaseolus preparations, whereas the analogue was inactive in all Polygonatum preparations. The possible nature of this different substrate behaviour is discussed.


2004 ◽  
Vol 384 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Sundaramurthy VARADHARAJAN ◽  
B. K. Chandrashekar SAGAR ◽  
Pundi N. RANGARAJAN ◽  
Govindarajan PADMANABAN

Our previous studies have demonstrated de novo haem biosynthesis in the malarial parasite (Plasmodium falciparum and P. berghei). It has also been shown that the first enzyme of the pathway is the parasite genome-coded ALA (δ-aminolaevulinate) synthase localized in the parasite mitochondrion, whereas the second enzyme, ALAD (ALA dehydratase), is accounted for by two species: one species imported from the host red blood cell into the parasite cytosol and another parasite genome-coded species in the apicoplast. In the present study, specific antibodies have been raised to PfFC (parasite genome-coded ferrochelatase), the terminal enzyme of the haem-biosynthetic pathway, using recombinant truncated protein. With the use of these antibodies as well as those against the hFC (host red cell ferrochelatase) and other marker proteins, immunofluorescence studies were performed. The results reveal that P. falciparum in culture manifests a broad distribution of hFC and a localized distribution of PfFC in the parasite. However, PfFC is not localized to the parasite mitochondrion. Immunoelectron-microscopy studies reveal that PfFC is indeed localized to the apicoplast, whereas hFC is distributed in the parasite cytoplasm. These results on the localization of PfFC are unexpected and are at variance with theoretical predictions based on leader sequence analysis. Biochemical studies using the parasite cytosolic and organellar fractions reveal that the cytosol containing hFC accounts for 80% of FC enzymic activity, whereas the organellar fraction containing PfFC accounts for the remaining 20%. Interestingly, both the isolated cytosolic and organellar fractions are capable of independent haem synthesis in vitro from [4-14C]ALA, with the cytosol being three times more efficient compared with the organellar fraction. With [2-14C]glycine, most of the haem is synthesized in the organellar fraction. Thus haem is synthesized in two independent compartments: in the cytosol, using the imported host enzymes, and in the organellar fractions, using the parasite genome-coded enzymes.


1977 ◽  
Vol 138 (3) ◽  
pp. 561-564 ◽  
Author(s):  
B.M. Djuricˇic´ ◽  
B.B. Mruˇlja

Sign in / Sign up

Export Citation Format

Share Document