Effect of temperature on coupling of insulin receptors to stimulation of glucose transport in isolated rat adipocytes

Metabolism ◽  
1983 ◽  
Vol 32 (10) ◽  
pp. 1002-1008 ◽  
Author(s):  
Theodore P. Ciaraldi ◽  
Jerrold M. Olefsky
1983 ◽  
Vol 216 (3) ◽  
pp. 737-745 ◽  
Author(s):  
D M Kirsch ◽  
M Baumgarten ◽  
T Deufel ◽  
F Rinninger ◽  
W Kemmler ◽  
...  

The effects of pre-incubation with isoprenaline and noradrenaline on insulin binding and insulin stimulation of D-glucose transport in isolated rat adipocytes are reported. (1) Pre-incubation of the cells with isoprenaline (0.1-10 microM) in Krebs-Ringer-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid] buffer (30 min, 37 degrees C) at D-glucose concentrations of 16 mM, in which normal ATP levels were maintained, caused a rightward-shift in sensitivity of D-glucose transport to insulin stimulation by 50% and a decrease in maximal responsiveness by 30% (2) [A14-125I]insulin binding was reduced significantly by 35% at insulin concentrations less than 100 mu-units/ml and Scatchard analysis showed that this consisted mainly of a decrease in high-affinity binding. (3) Pre-incubation with catecholamines under the same conditions but at low glucose concentrations (0-5 mM) caused a fall in intracellular ATP levels of 65 and 45% respectively. (4) The fall in ATP additionally lowered insulin binding by 50% at all insulin concentrations and a parallel shift of the binding curves in the Scatchard plot showed that this was due to a decrease in the number of receptors. (5) At low and high ATP concentrations the insulin stimulation of D-glucose transport was inhibited to a similar extent. (6) Pre-incubation with catecholamines thus inhibited insulin stimulation of D-glucose transport in rat adipocytes mainly by a decrease in high-affinity binding of insulin, which was not mediated by low ATP levels. This mechanism may play a role in the pathogenesis of catecholamine-induced insulin resistance in vivo.


1981 ◽  
Vol 200 (2) ◽  
pp. 425-428 ◽  
Author(s):  
H Goko ◽  
S Takashima ◽  
A Kawamuro ◽  
A Matsuoka

The effects of dithiothreitol on basal glucose oxidation, hormone-induced lipolysis and insulin receptors in isolated rat adipocytes were studied. Dithiothreitol produced a dose-dependent stimulation of basal glucose oxidation and inhibition of adrenaline-induced lipolysis. Dithiothreitol also inhibited corticotropin-induced lipolysis, but failed to inhibit dibutyryl cyclic AMP-induced lipolysis. Dithiothreitol did not inhibit the binding of the beta-adrenergic antagonist [3H]dihydroalprenolol to adipocytes. Neither catalase (100 micrograms/ml) nor EDTA (2 mM) abolished the antilipolytic effect of dithiothreitol. Treatment of isolated adipocytes with 1 mM-dithiothreitol for 20 min at 37 degrees C also caused stimulation of basal glucose oxidation and inhibition of adrenaline-induced lipolysis. A Scatchard plot of insulin binding to control adipocytes was curvilinear. However, treatment of cells with 1 mM-dithiothreitol decreased the curvilinearity of the plot, indicating that only a low-affinity state of the insulin receptors exists in the dithiothreitol-treated adipocytes. These findings suggest that the insulin-like activities of dithiothreitol are mediated through the interaction of dithiothreitol with insulin receptors.


2000 ◽  
Vol 113 (23) ◽  
pp. 4203-4210 ◽  
Author(s):  
D. Malide ◽  
G. Ramm ◽  
S.W. Cushman ◽  
J.W. Slot

We used an improved cryosectioning technique in combination with quantitative immunoelectron microscopy to study GLUT4 compartments in isolated rat white adipose cells. We provide clear evidence that in unstimulated cells most of the GLUT4 localizes intracellularly to tubulovesicular structures clustered near small stacks of Golgi and endosomes, or scattered throughout the cytoplasm. This localization is entirely consistent with that originally described in brown adipose tissue, strongly suggesting that the GLUT4 compartments in white and brown adipose cells are morphologically similar. Furthermore, insulin induces parallel increases (with similar magnitudes) in glucose transport activity, approximately 16-fold, and cell-surface GLUT4, approximately 12-fold. Concomitantly, insulin decreases GLUT4 equally from all intracellular locations, in agreement with the concept that the entire cellular GLUT4 pool contributes to insulin-stimulated exocytosis. In the insulin-stimulated state, GLUT4 molecules are not randomly distributed on the plasma membrane, but neither are they enriched in caveolae. Importantly, the total number of GLUT4 C-terminal epitopes detected by the immuno-gold method is not significantly different between basal and insulin-stimulated cells, thus arguing directly against a reported insulin-induced unmasking effect. These results provide strong morphological evidence (1) that GLUT4 compartments are similar in all insulin-sensitive cells and (2) for the concept that GLUT4 translocation almost fully accounts for the increase in glucose transport in response to insulin.


1982 ◽  
Vol 4 (4) ◽  
pp. 261-271 ◽  
Author(s):  
Tj. Wieringa ◽  
G. Bruin ◽  
W. P. M. Meerwijk ◽  
H. M. J. Krans

1978 ◽  
Vol 234 (2) ◽  
pp. E112 ◽  
Author(s):  
J E Foley ◽  
S W Cushman ◽  
L B Salans

Data is presented suggesting that rates of L-arabinose transport, calculated from L-[1-14C]arabinose uptake measurements, can be used as indicators of changes in the rates of glucose transport in isolated rat adipocytes. L-[1-14C]arabinose, at 37 degrees C, was found to be nonmetabolizable and taken up by adipocytes exponentially with time reaching 95% of equilibrium in 30 min. When L-arabinose is corrected for background, the corrected uptake values conform to the time-dependent monoexponential uptake relationshiop predicted for a facilitated transport system and are not significantly different from 0 in the presence of 70 micron cytochalasin B. Transport rates were calculated from corrected uptake values near the half-maximal uptake of L-arabinose and from a value of the total amount of L-arabinose in the cell at equilibrium. Competitive inhibition of L-arabinose transport by glucose and countertransport of L-arabinose in the presence of glucose suggest that L-arabinose and glucose share the same transport system. Data is presented demonstrating the effect of insulin and dexamethasone on the transport system that confirms the conclusions obtained by other investigators using other methods.


Sign in / Sign up

Export Citation Format

Share Document