Effects of 3-aminobenzamide on Chinese hamster cells treated with thymidine analogues and DNA-damaging agents chromosomal aberrations, mutations and cell-cycle progression

Author(s):  
T.S.B. Zwanenburg ◽  
K. Hansson ◽  
F. Darroudi ◽  
A.A. van Zeeland ◽  
A.T. Natarajan
2004 ◽  
Vol 149 (2-3) ◽  
pp. 125-136 ◽  
Author(s):  
Pei-Ming Yang ◽  
Shu-Jun Chiu ◽  
Kwei-Ann Lin ◽  
Lih-Yuan Lin

Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5862-5874 ◽  
Author(s):  
Yasushi Kaburagi ◽  
Ryo Yamashita ◽  
Yuzuru Ito ◽  
Hitoshi Okochi ◽  
Ritsuko Yamamoto-Honda ◽  
...  

Abstract To analyze the roles of insulin receptor substrate (IRS) proteins in insulin-stimulated cell cycle progression, we examined the functions of rat IRS-1 and IRS-3 in Chinese hamster ovary cells overexpressing the human insulin receptor. In this type of cell overexpressing IRS-1 or IRS-3, we showed that: 1) overexpression of IRS-3, but not IRS-1, suppressed the G1/S transition induced by insulin; 2) IRS-3 was more preferentially localized to the nucleus than IRS-1; 3) phosphorylation of glycogen synthase kinase 3 and MAPK/ERK was unaffected by IRS-3 overexpression, whereas that of protein kinase B was enhanced by either IRS; 4) overexpressed IRS-3 suppressed cyclin D1 expression in response to insulin; 5) among the signaling molecules regulating cyclin D1 expression, activation of the small G protein Ral was unchanged, whereas insulin-induced gene expression of c-myc, a critical component for growth control and cell cycle progression, was suppressed by overexpressed IRS-3; and 6) insulin-induced expression of p21, a cyclin-dependent kinase inhibitor, was decreased by overexpressed IRS-3. These findings imply that: 1) IRS-3 may play a unique role in mitogenesis by inhibiting insulin-stimulated cell cycle progression via a decrease in cyclin D1 and p21 expressions as well as suppression of c-myc mRNA induction in a manner independent of the activation of MAPK, protein kinase B, glycogen synthase kinase 3 and Ral; and 2) the interaction of IRS-3 with nuclear proteins may be involved in this process.


1973 ◽  
Vol 58 (2) ◽  
pp. 340-345 ◽  
Author(s):  
Kenneth D. Ley ◽  
Marilyn M. Murphy

Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.


2005 ◽  
Vol 65 (12) ◽  
pp. 5344-5351 ◽  
Author(s):  
Mary M. McHugh ◽  
Loretta S. Gawron ◽  
Sei-Ichi Matsui ◽  
Terry A. Beerman

2018 ◽  
Author(s):  
Jeroen van den Berg ◽  
Anna G. Manjón ◽  
Karoline Kielbassa ◽  
Femke M. Feringa ◽  
Raimundo Freire ◽  
...  

AbstractDNA damaging agents cause a variety of lesions, of which DNA double-strand breaks (DSBs) are the most genotoxic. Unbiased approaches aimed at investigating the relationship between the number of DSBs and outcome of the DNA damage response have been challenging due to the random nature in which damage is induced by classical DNA damaging agents. Here we describe a CRISPR/Cas9-based system that permits us to efficiently introduce DSBs at defined sites in the genome. Using this system, we show that a guide RNA targeting only a single site in the human genome can trigger a checkpoint response that is potent enough to delay cell cycle progression. Abrogation of this checkpoint leads to DNA breaks in mitosis which give rise to micronucleated daughter cells.


Sign in / Sign up

Export Citation Format

Share Document