Concentration-dependent effects of sodium butyrate in Chinese hamster cells: cell-cycle progression, inner-histone acetylation, histone H1 dephosphorylation, and induction of an H1-like protein

Biochemistry ◽  
1980 ◽  
Vol 19 (12) ◽  
pp. 2656-2671 ◽  
Author(s):  
Joseph A. D'Anna ◽  
Robert A. Tobey ◽  
Lawrence R. Gurley
2004 ◽  
Vol 149 (2-3) ◽  
pp. 125-136 ◽  
Author(s):  
Pei-Ming Yang ◽  
Shu-Jun Chiu ◽  
Kwei-Ann Lin ◽  
Lih-Yuan Lin

Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5862-5874 ◽  
Author(s):  
Yasushi Kaburagi ◽  
Ryo Yamashita ◽  
Yuzuru Ito ◽  
Hitoshi Okochi ◽  
Ritsuko Yamamoto-Honda ◽  
...  

Abstract To analyze the roles of insulin receptor substrate (IRS) proteins in insulin-stimulated cell cycle progression, we examined the functions of rat IRS-1 and IRS-3 in Chinese hamster ovary cells overexpressing the human insulin receptor. In this type of cell overexpressing IRS-1 or IRS-3, we showed that: 1) overexpression of IRS-3, but not IRS-1, suppressed the G1/S transition induced by insulin; 2) IRS-3 was more preferentially localized to the nucleus than IRS-1; 3) phosphorylation of glycogen synthase kinase 3 and MAPK/ERK was unaffected by IRS-3 overexpression, whereas that of protein kinase B was enhanced by either IRS; 4) overexpressed IRS-3 suppressed cyclin D1 expression in response to insulin; 5) among the signaling molecules regulating cyclin D1 expression, activation of the small G protein Ral was unchanged, whereas insulin-induced gene expression of c-myc, a critical component for growth control and cell cycle progression, was suppressed by overexpressed IRS-3; and 6) insulin-induced expression of p21, a cyclin-dependent kinase inhibitor, was decreased by overexpressed IRS-3. These findings imply that: 1) IRS-3 may play a unique role in mitogenesis by inhibiting insulin-stimulated cell cycle progression via a decrease in cyclin D1 and p21 expressions as well as suppression of c-myc mRNA induction in a manner independent of the activation of MAPK, protein kinase B, glycogen synthase kinase 3 and Ral; and 2) the interaction of IRS-3 with nuclear proteins may be involved in this process.


1973 ◽  
Vol 58 (2) ◽  
pp. 340-345 ◽  
Author(s):  
Kenneth D. Ley ◽  
Marilyn M. Murphy

Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.


2016 ◽  
Vol 36 (19) ◽  
pp. 2487-2502 ◽  
Author(s):  
Shakur Mohibi ◽  
Shashank Srivastava ◽  
Aditya Bele ◽  
Sameer Mirza ◽  
Hamid Band ◽  
...  

Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012,http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation inAda3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation.


2020 ◽  
Author(s):  
Kelsey L Lynch ◽  
Mongoljin Bat-Erdene ◽  
Melanie R Dillon ◽  
Hannah C Lewis ◽  
Daphne C Avgousti

Virus infection necessarily requires redirecting cellular resources towards viral progeny production. Adenovirus successfully accomplishes this by usurping host chromatin through multiple approaches from redistributing histone modifications to globally altering chromatin composition. We previously showed that adenovirus histone-like protein VII sequesters the histone chaperone SET and the HMGB family of alarmins in host chromatin. HMGB1 has been shown to antagonize linker histone H1 binding to chromatin. Consistent with this antagonism, we find several H1 isoforms significantly chromatin-depleted in the presence of protein VII and accompanying HMGB proteins. Here, we use complementary systems in Saccharomyces cerevisiae and human cells to dissect the mechanism of chromatin invasion by adenovirus protein VII. In yeast, we find that protein VII binds chromatin and subsequently slows cell growth. Using yeast genetics, we demonstrate that loss of HMGB1 or SET homologs rescues this growth defect, indicating that these factors are required for the phenotype, while deletion of the linker histone H1 homolog exacerbates the defect. Strikingly, expression of human SET or HMGB1 in the corresponding mutant background restores the defects. We find that as a consequence of chromatin invasion, protein VII disrupts cell cycle progression such that cells accumulate in G2/M, both in yeast and diploid human cells. Moreover, we demonstrate that protein VII can impede the cell cycle in the presence of adenovirus E1A and E1B, two viral proteins well-established to override cell cycle checkpoints. Together, our results demonstrate that protein VII exploits H1-HMGB1 antagonism to invade chromatin and obstruct cell cycle progression, ensuring cellular resources are directed towards viral progeny production.


Sign in / Sign up

Export Citation Format

Share Document