Motion estimation of two-dimensional objects based on the straight line hough transform: A new approach

1996 ◽  
Vol 29 (8) ◽  
pp. 1245-1258 ◽  
Author(s):  
Li Hsiang-Ling ◽  
Chakrabarti Chaitali
Author(s):  
B. M. A. GENSWEIN ◽  
YEE-HONG YANG

This paper introduces a new discrete Hough transform, DHT, that pre-computes discrete line information (rules) and uses this information to detect line segments in the image. Pre-computing line information removes the need for run-time line calculations and the associated parameters. The proposed approach does not depend on the parameterization of a straight line and is formulated based on the discrete domain. This new DHT is compared with selected existing techniques to demonstrate the large reduction in computation time achieved by this new approach, while not sacrificing accuracy.


2001 ◽  
Vol 13 (3) ◽  
pp. 651-676 ◽  
Author(s):  
Jayanta Basak

A single-layered Hough transform network is proposed that accepts image coordinates of each object pixel as input and produces a set of outputs that indicate the belongingness of the pixel to a particular structure (e.g., a straight line). The network is able to learn adaptively the parametric forms of the linear segments present in the image. It is designed for learning and identification not only of linear segments in two-dimensional images but also the planes and hyperplanes in the higher-dimensional spaces. It provides an efficient representation of visual information embedded in the connection weights. The network not only reduces the large space requirement, as in the case of classical Hough transform, but also represents the parameters with high precision.


2018 ◽  
Vol 18 (2) ◽  
pp. 112-122
Author(s):  
Dmitry N. Aldoshkin ◽  
Roman Y. Tsarev

Abstract This paper proposes an algorithm that assesses the angular orientation of a mobile robot with respect to its referential position or a map of the surrounding space. In the framework of the suggested method, the orientation problem is converted to evaluating a dimensional rotation of the object that is abstracted as a polygon (or a closed polygonal chain). The method is based on Hough transform, which transforms the measurement space to a parametric space (in this case, a two-dimensional space [θ, r] of straight-line parameters). The Hough transform preserves the angles between the straight lines during rotation, translation, and isotropic scaling transformations. The problem of rotation assessment then becomes a one-dimensional optimization problem. The suggested algorithm inherits the Hough method’s robustness to noise.


2021 ◽  
Vol 154 (15) ◽  
pp. 154203
Author(s):  
Michael Woerner ◽  
Ahmed Ghalgaoui ◽  
Klaus Reimann ◽  
Thomas Elsaesser

RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 87739-87749 ◽  
Author(s):  
Xiaopei Li ◽  
Anqi He ◽  
Kun Huang ◽  
Huizhou Liu ◽  
Ying Zhao ◽  
...  

A new approach called “asynchronous spectrum with auxiliary peaks (ASAP)” is proposed for generating a 2D asynchronous spectrum to investigate the intermolecular interaction between two solutes (P and Q) dissolved in the same solution.


1958 ◽  
Vol 4 (6) ◽  
pp. 600-606 ◽  
Author(s):  
G. Power ◽  
P. Smith

A set of two-dimensional subsonic flows past certain cylinders is obtained using hodograph methods, in which the true pressure-volume relationship is replaced by various straight-line approximations. It is found that the approximation obtained by a least-squares method possibly gives best results. Comparison is made with values obtained by using the von Kármán-Tsien approximation and also with results obtained by the variational approach of Lush & Cherry (1956).


2014 ◽  
Vol 519-520 ◽  
pp. 1040-1045
Author(s):  
Ling Fan

This paper makes some improvements on Roberts representation for straight line in space and proposes a coarse-to-fine three-dimensional (3D) Randomized Hough Transform (RHT) for the detection of dim targets. Using range, bearing and elevation information of the received echoes, 3D RHT can detect constant velocity target in space. In addition, this paper applies a coarse-to-fine strategy to the 3D RHT, which aims to solve both the computational and memory complexity problems. The validity of the coarse-to-fine 3D RHT is verified by simulations. In comparison with the 2D case, which only uses the range-bearing information, the coarse-to-fine 3D RHT has a better practical value in dim target detection.


2021 ◽  
pp. 16-21
Author(s):  
Kirill Yu. Solomentsev ◽  
Vyacheslav I. Lachin ◽  
Aleksandr E. Pasenchuk

Several variants of half division two-dimensional method are proposed, which is the basis of a fundamentally new approach for constructing measuring instruments for sinusoidal or periodic electrical quantities. These measuring instruments are used in the diagnosis of electric power facilities. The most general variant, called midpoint method, is considered. The proposed midpoint method allows you to measure much smaller than using widespread methods, alternating currents or voltages, especially when changing the amplitude of the measured signal in very wide ranges, by 1–2 orders of magnitude. It is shown that using the midpoint method it is possible to suppress sinusoidal or periodic interference in the measuring path, in particular, to measure small alternating current when sinusoidal or periodic interference is 1–2 orders of magnitude higher than the useful signal. Based on the results of comparative tests, it was found that the current measuring device implementing the midpoint method is an order of magnitude more sensitive than the currently used high-precision measuring instruments.


Sign in / Sign up

Export Citation Format

Share Document