Derivation of the Boltzmann equation for a quantum-mechanical weakly inhomogeneous dilute gas

Physica ◽  
1973 ◽  
Vol 69 (2) ◽  
pp. 380-402
Author(s):  
W. Peier ◽  
A. Thellung
Author(s):  
Olivier Darrigol

This chapter covers Boltzmann’s writings about the Boltzmann equation and the H theorem in the period 1872–1875, through which he succeeded in deriving the irreversible evolution of the distribution of molecular velocities in a dilute gas toward Maxwell’s distribution. Boltzmann also used his equation to improve on Maxwell’s theory of transport phenomena (viscosity, diffusion, and heat conduction). The bulky memoir of 1872 and the eponymous equation probably are Boltzmann’s most famous achievements. Despite the now often obsolete ways of demonstration, despite the lengthiness of the arguments, and despite hidden difficulties in the foundations, Boltzmann there displayed his constructive skills at their best.


Author(s):  
Sauro Succi

Kinetic theory is the branch of statistical physics dealing with the dynamics of non-equilibrium processes and their relaxation to thermodynamic equilibrium. Established by Ludwig Boltzmann (1844–1906) in 1872, his eponymous equation stands as its mathematical cornerstone. Originally developed in the framework of dilute gas systems, the Boltzmann equation has spread its wings across many areas of modern statistical physics, including electron transport in semiconductors, neutron transport, quantum-relativistic fluids in condensed matter and even subnuclear plasmas. In this Chapter, a basic introduction to the Boltzmann equation in the context of classical statistical mechanics shall be provided.


Author(s):  
Charles R Lilley ◽  
John E Sader

Flow of a dilute gas near a solid surface exhibits non-continuum effects that are manifested in the Knudsen layer. The non-Newtonian nature of the flow in this region has been the subject of a number of recent studies suggesting that the so-called ‘effective viscosity’ at a solid surface is half that of the standard dynamic viscosity. Using the Boltzmann equation with a diffusely reflecting surface and hard sphere molecules, Lilley & Sader discovered that the flow exhibits a striking power-law dependence on distance from the solid surface where the velocity gradient is singular. Importantly, these findings (i) contradict these recent claims and (ii) are not predicted by existing high-order hydrodynamic flow models. Here, we examine the applicability of these findings to surfaces with arbitrary thermal accommodation and molecules that are more realistic than hard spheres. This study demonstrates that the velocity gradient singularity and power-law dependence arise naturally from the Boltzmann equation, regardless of the degree of thermal accommodation. These results are expected to be of particular value in the development of hydrodynamic models beyond the Boltzmann equation and in the design and characterization of nanoscale flows.


Starting from the Boltzmann equation for a completely ionized dilute gas with no interparticle collision term but a strong Lorentz force, an attempt is made to obtain one-fluid hydromagnetic equations by expanding in the ion mass to charge ratio. It is shown that the electron degrees of freedom can be replaced by a macroscopic current, but true hydrodynamics still does not result unless some special circumstance suppresses the transport of pressure along magnetic lines of force. If the longitudinal transport of pressure is ignored, a set of self-contained one-fluid hydromagnetic equations can be found even though the pressure is not a scalar.


Author(s):  
Sauro Succi

Like most of the greatest equations in science, the Boltzmann equation is not only beautiful but also generous. Indeed, it delivers a great deal of information without imposing a detailed knowledge of its solutions. In fact, Boltzmann himself derived most if not all of his main results without ever showing that his equation did admit rigorous solutions. This Chapter illustrates one of the most profound contributions of Boltzmann, namely the famous H-theorem, providing the first quantitative bridge between the irreversible evolution of the macroscopic world and the reversible laws of the underlying microdynamics.


Sign in / Sign up

Export Citation Format

Share Document