Dynamics of strongly time-dependent convection with non-Newtonian temperature-dependent viscosity

1996 ◽  
Vol 94 (1-2) ◽  
pp. 75-103 ◽  
Author(s):  
Tine B. Larsen ◽  
David A. Yuen ◽  
Andrei V. Malevsky ◽  
Jamie L. Smedsmo
Geology ◽  
2021 ◽  
Author(s):  
Jyotirmoy Paul ◽  
Attreyee Ghosh

Thick and highly viscous roots are the key to cratonic survival. Nevertheless, cratonic roots can be destroyed under certain geological scenarios. Eruption of mantle plumes underneath cratons can reduce root viscosity and thus make them more prone to deformation by mantle convection. It has been proposed that the Indian craton could have been thinned due to eruption of the Réunion plume underneath it at ca. 65 Ma. In this study, we constructed spherical time-dependent forward mantle convection models to investigate whether the Réunion plume eruption could have reduced the Indian craton thickness. Along with testing the effect of different strengths of craton and its surrounding asthenosphere, we examined the effect of temperature-dependent viscosity on craton deformation. Our results show that the plume-induced thermomechanical erosion could have reduced the Indian craton thickness by as much as ~130 km in the presence of temperature-dependent viscosity. We also find that the plume material could have lubricated the lithosphere-asthenosphere boundary region beneath the Indian plate. This could be a potential reason for acceleration of the Indian plate since 65 Ma.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1300
Author(s):  
Evgenii S. Baranovskii ◽  
Vyacheslav V. Provotorov ◽  
Mikhail A. Artemov ◽  
Alexey P. Zhabko

This paper deals with a 3D mathematical model for the non-isothermal steady-state flow of an incompressible fluid with temperature-dependent viscosity in a pipeline network. Using the pressure and heat flux boundary conditions, as well as the conjugation conditions to satisfy the mass balance in interior junctions of the network, we propose the weak formulation of the nonlinear boundary value problem that arises in the framework of this model. The main result of our work is an existence theorem (in the class of weak solutions) for large data. The proof of this theorem is based on a combination of the Galerkin approximation scheme with one result from the field of topological degrees for odd mappings defined on symmetric domains.


Sign in / Sign up

Export Citation Format

Share Document