Fabric-related seismic anisotropy in upper-mantle xenoliths: evidence from measurements and calculations

1996 ◽  
Vol 95 (3-4) ◽  
pp. 195-209 ◽  
Author(s):  
H. Kern ◽  
L. Burlini ◽  
I.V. Ashchepkov
2001 ◽  
Vol 339 (3-4) ◽  
pp. 403-426 ◽  
Author(s):  
Kazuko Saruwatari ◽  
Shaocheng Ji ◽  
Changxing Long ◽  
Matthew H Salisbury

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Costanza Bonadiman ◽  
Valentina Brombin ◽  
Giovanni B. Andreozzi ◽  
Piera Benna ◽  
Massimo Coltorti ◽  
...  

AbstractThe occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P–T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3–3.0 GPa/540–1500 K, yields a negative Clapeyron slope of -0.003 GPa K–1 (on average). The intersection of the P–T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = –1.97 ± 0.35; –1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Cédric P. Legendre ◽  
Li Zhao ◽  
Tai-Lin Tseng

AbstractThe average anisotropy beneath Anatolia is very strong and is well constrained by shear-wave splitting measurements. However, the vertical layering of anisotropy and the contribution of each layer to the overall pattern is still an open question. Here, we construct anisotropic phase-velocity maps of fundamental-mode Rayleigh waves for the Anatolia region using ambient noise seismology and records from several regional seismic stations. We find that the anisotropy patterns in the crust, lithosphere and asthenosphere beneath Anatolia have limited amplitudes and are generally consistent with regional tectonics and mantle processes dominated by the collision between Eurasia and Arabia and the Aegean/Anatolian subduction system. The anisotropy of these layers in the crust and upper mantle are, however, not consistent with the strong average anisotropy measured in this area. We therefore suggest that the main contribution to overall anisotropy likely originates from a deep and highly anisotropic region round the mantle transition zone.


1997 ◽  
Vol 60 (3-4) ◽  
pp. 145-164 ◽  
Author(s):  
M. E. Varela ◽  
E. A. Bjerg ◽  
R. Clocchiatti ◽  
C. H. Labudia ◽  
G. Kurat

Sign in / Sign up

Export Citation Format

Share Document