The effect of interstitial air pressure gradients on the discharge from bins

1983 ◽  
Vol 35 (1) ◽  
pp. 69-81 ◽  
Author(s):  
R.M. Nedderman ◽  
U. Tūzūn ◽  
R.B. Thorpe
2021 ◽  
Vol 50 (3) ◽  
pp. 263-273
Author(s):  
Annika Gomell ◽  
Daniel Austin ◽  
Marc Ohms ◽  
Andreas Pflitsch

In barometric caves, air pressure gradients between the outside atmosphere and the cave induce strong bidirectional compensating currents, which control almost all elements of speleoclimatology, including air temperature, humidity, and CO2 dynamics. Therefore, this study set out to investigate air pressure propagation through Wind Cave and Jewel Cave – two major barometric cave systems in the Black Hills of South Dakota, USA. Based on high-resolution air pressure data from both the surface and several measurement sites inside the caves, four systematic changes of pressure waves during their journey through the caves and their related speleoclimatological processes were identified and discussed: Compared to the outside atmosphere, the pressure signals within Wind Cave and Jewel Cave showed (1) an absolute displacement due to different altitudes of the measuring sites, (2) a delay related to the travel times of the pressure wave to the measuring sites, (3) a smoothing effect, and (4) a damping effect due to long response times of the caves to external pressure changes. The spatial distribution of the changes observed in this study shows that for Wind Cave, the cave opening and the narrow entrance area represent the main obstacle for pressure propagation, while for Jewel Cave, the deep areas have the greatest influence on the development of air pressure gradients. Our analyses provide completely new insights into the processes and mechanisms inside barometric caves, which will significantly contribute to the understanding of pressure-related airflow dynamics and all related elements of speleoclimatology.


2015 ◽  
Vol 102 ◽  
pp. 959-967
Author(s):  
Koichiro Ogata ◽  
Satoshi Miura ◽  
Yoshihiko Utsunomiya

2019 ◽  
Vol 62 (5) ◽  
pp. 1326-1337 ◽  
Author(s):  
Brittany L. Perrine ◽  
Ronald C. Scherer ◽  
Jason A. Whitfield

Purpose Oral air pressure measurements during lip occlusion for /pVpV/ syllable strings are used to estimate subglottal pressure during the vowel. Accuracy of this method relies on smoothly produced syllable repetitions. The purpose of this study was to investigate the oral air pressure waveform during the /p/ lip occlusions and propose physiological explanations for nonflat shapes. Method Ten adult participants were trained to produce the “standard condition” and were instructed to produce nonstandard tasks. Results from 8 participants are included. The standard condition required participants to produce /pːiːpːiː.../ syllables smoothly at approximately 1.5 syllables/s. The nonstandard tasks included an air leak between the lips, faster syllable repetition rates, an initial voiced consonant, and 2-syllable word productions. Results Eleven oral air pressure waveform shapes were identified during the lip occlusions, and plausible physiological explanations for each shape are provided based on the tasks in which they occurred. Training the use of the standard condition, the initial voice consonant condition, and the 2-syllable word production increased the likelihood of rectangular oral air pressure waveform shapes. Increasing the rate beyond 1.5 syllables/s improved the probability of producing rectangular oral air pressure signal shapes in some participants. Conclusions Visual and verbal feedback improved the likelihood of producing rectangular oral air pressure signal shapes. The physiological explanations of variations in the oral air pressure waveform shape may provide direction to the clinician or researcher when providing feedback to increase the accuracy of estimating subglottal pressure from oral air pressure.


Sign in / Sign up

Export Citation Format

Share Document