Rock Glaciers and Block fields, Review and new data

1976 ◽  
Vol 6 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Sidney E. White

Tongue-shaped and lobate rock glaciers are recognized in most alpine regions today. For the tongue-shaped, two situations emerge: those with buried glacier ice (debris-covered glaciers) called ice-cored rock glaciers, and those with interstitial ice known as ice-cemented rock glaciers. Those with ice cores are revealed by depressions between rock glacier and headwall cliff (where a former glacier melted), longitudinal marginal and central meandering furrows, and collapse pits. Ice-cemented rock glaciers ordinarily do not possess these features. As applied to 18 rock glaciers in the Colorado Front Range, 11 of 12 east of the Continental Divide are ice-cored, 6 west of the Divide are ice-cemented. The majority of lobate rock glaciers in the Colorado Front Range are on the south sides of valleys, and, except for talus, are the most voluminous form of mass wasting. All those active and above treeline have characteristics common to all rock glaciers. In addition, they originate from talus, contain interstitial ice, move outward from valley walls at 1–6 cm/yr, and transport more debris as a process of erosion than heretofore realized. Block fields and block slopes, in polar and alpine regions, are thin accumulations of angular to subrounded blocks, on bedrock, weathered rock, or transported debris. They extend along slopes parallel to the contour. Block streams are similar but extend downslope normal to the contour and into valleys. They are made of interlocked blocks without interstitial detritus, but many have finer material deeper inside. The fabric of surface blocks indicates that motion most likely occurred during a periglacial time when interstitial debris, now washed or piped out, permitted movement of the whole deposit.

1965 ◽  
Vol 5 (42) ◽  
pp. 849-856 ◽  
Author(s):  
Samuel I. Outcalt ◽  
James B. Benedict

AbstractTwo types of rock glacier occur in the Colorado Front Range. Rock glaciers on the floors of modern cirques closely resemble the tongues of small valley glaciers. Because they contain cores of banded glacial ice and grade up-valley into lateral moraines, rock glaciers of this type are believed to represent the debris-covered tongues of former glaciers. Most consist of two or more superimposed lobes, bounded by longitudinal furrows, and resulting from independent ice advances. Despite their compound nature, the complexes now appear to be moving down-slope as single units. Two generations of “cirque-floor” rock glaciers, both tentatively dated as being of post-Pleistocene age, occur in the Front Range.Rock glaciers of an entirely different character occur beneath steep valley walls, where they are supplied with debris by avalanche couloirs. Interstitial ice, responsible for the movement of “valley-wall” rock glaciers, probably results from the metamorphism of snow buried beneath rock-fall debris or supplied by winter avalanching.


1965 ◽  
Vol 5 (42) ◽  
pp. 849-856 ◽  
Author(s):  
Samuel I. Outcalt ◽  
James B. Benedict

Abstract Two types of rock glacier occur in the Colorado Front Range. Rock glaciers on the floors of modern cirques closely resemble the tongues of small valley glaciers. Because they contain cores of banded glacial ice and grade up-valley into lateral moraines, rock glaciers of this type are believed to represent the debris-covered tongues of former glaciers. Most consist of two or more superimposed lobes, bounded by longitudinal furrows, and resulting from independent ice advances. Despite their compound nature, the complexes now appear to be moving down-slope as single units. Two generations of “cirque-floor” rock glaciers, both tentatively dated as being of post-Pleistocene age, occur in the Front Range. Rock glaciers of an entirely different character occur beneath steep valley walls, where they are supplied with debris by avalanche couloirs. Interstitial ice, responsible for the movement of “valley-wall” rock glaciers, probably results from the metamorphism of snow buried beneath rock-fall debris or supplied by winter avalanching.


1980 ◽  
Vol 25 (93) ◽  
pp. 492-497 ◽  
Author(s):  
W. C. Mahaney

AbstractRock glaciers in Teleki Valley on Mount Kenya exist above 4 000 m below steep valley walls where they are supplied with debris from avalanche couloirs. These valley-side rock glaciers consist of three or four lobes of rubble bounded by transverse furrows resulting from differential movement. No ice cores were observed in these rubble sheets, but “drunken forest” stands of Senecio keniodendron indicate the probable presence of interstitial ice resulting either from the metamorphism of snow buried under rockfall and slide-rock debris, or from freezing of water beneath the rock mantle. A geological survey of Mount Kenya in 1976 revealed that rock glaciers are anomalous in the Mount Kenya Afroalpine zone above 3 300 m. Analysis of weathering rinds indicates that several rock-glacier lobes were built up over a short interval of time at or near the end of the last glacial maximum (Würm). Oversteepened fronts on the westernmost lobes may have resulted from re-activation coinciding with the advance of glaciers during late Holocene time (<1 000 B.P.). Soils mantle 20% of the rock-glacier surface and have morphological characteristics comparable with soils forming on moraines of late Würm age in upper Teleki, Hausberg, and Mackinder Valleys.


1992 ◽  
Vol 16 (2) ◽  
pp. 127-186 ◽  
Author(s):  
W. Brian Whalley ◽  
H. Elizabeth Martin

This second part of a review deals with the mechanisms of rock glacier formation and flow. The presence of a copious debris supply is important in all models, although the source of ice necessary for deformation of the debris is in dispute. Evidence for the three main models: permafrost creep, debris-covered glaciers and talus deformation (rockslide), are reviewed. Seismic and resistivity evidence suggests a nonglacial (permafrost) origin where such measurements have been made. There is also good evidence that glacier ice can be seen and its extent determined in other examples. Morphological characteristics are presented; in some cases they seem to be applicable to the permafrost creep model but can also be explained by the debris-covered glacier model. The consequences of both these models are discussed in the light of the appropriate flow law models. Several different ways in which talus deformation have been suggested and these can be applied in some cases. Because of confusion in the designation of 'valley side rock glaciers' these are here termed 'protalus lobes'. The origin of these features is still problematical and may not be the same as for rock glaciers sensu stricto. It is argued that there is still no conclusive evidence for a single flow mechanism for all the features ascribed as rock glacier or protalus lobes.


1980 ◽  
Vol 25 (93) ◽  
pp. 492-497 ◽  
Author(s):  
W. C. Mahaney

AbstractRock glaciers in Teleki Valley on Mount Kenya exist above 4 000 m below steep valley walls where they are supplied with debris from avalanche couloirs. These valley-side rock glaciers consist of three or four lobes of rubble bounded by transverse furrows resulting from differential movement. No ice cores were observed in these rubble sheets, but “drunken forest” stands ofSenecio keniodendronindicate the probable presence of interstitial ice resulting either from the metamorphism of snow buried under rockfall and slide-rock debris, or from freezing of water beneath the rock mantle. A geological survey of Mount Kenya in 1976 revealed that rock glaciers are anomalous in the Mount Kenya Afroalpine zone above 3 300 m. Analysis of weathering rinds indicates that several rock-glacier lobes were built up over a short interval of time at or near the end of the last glacial maximum (Würm). Oversteepened fronts on the westernmost lobes may have resulted from re-activation coinciding with the advance of glaciers during late Holocene time (&lt;1 000 B.P.). Soils mantle 20% of the rock-glacier surface and have morphological characteristics comparable with soils forming on moraines of late Würm age in upper Teleki, Hausberg, and Mackinder Valleys.


2007 ◽  
Vol 32 (7) ◽  
pp. 1032-1047 ◽  
Author(s):  
M. W. Williams ◽  
M. Knauf ◽  
R. Cory ◽  
N. Caine ◽  
F. Liu

2011 ◽  
Vol 22 (2) ◽  
pp. 107-119 ◽  
Author(s):  
M. Leopold ◽  
M.W. Williams ◽  
N. Caine ◽  
J. Völkel ◽  
D. Dethier

Sign in / Sign up

Export Citation Format

Share Document